Coupling a Fluctuating Fluid with Suspended Structures

Aleksandar Donev

Courant Institute, New York University & Florencio "Balboa" Usabiaga, UAM Rafael Delgado-Buscalioni, UAM Boyce Griffith, Courant

> Applied Math Seminar NJIT October 2012

Introduction

- 2 Fluctuating Hydrodynamics
- 3 Incompressible Inertial Coupling

4 Numerics

Micro- and nano-hydrodynamics

- Flows of fluids (gases and liquids) through micro- (μm) and nano-scale (nm) structures has become technologically important, e.g., micro-fluidics, microelectromechanical systems (MEMS).
- Biologically-relevant flows also occur at micro- and nano- scales.
- An important feature of small-scale flows, not discussed here, is **surface/boundary effects** (e.g., slip in the contact line problem).
- Essential distinguishing feature from "ordinary" CFD: thermal fluctuations!
- I hope to demonstrate the general conclusion that **fluctuations** should be taken into account at all level.

Introduction

Levels of Coarse-Graining

Figure: From Pep Español, "Statistical Mechanics of Coarse-Graining"

Thermal Fluctuations Matter

Snapshots of concentration in a miscible mixture showing the development of a *rough* diffusive interface between two miscible fluids in zero gravity [1, 2, 3]. A similar pattern is seen over a broad range of Schmidt numbers and is affected strongly by nonzero gravity.

Fluctuating Navier-Stokes Equations

- We will consider a binary fluid mixture with mass concentration $c = \rho_1/\rho$ for two fluids that are dynamically identical, where $\rho = \rho_1 + \rho_2$ (e.g., fluorescently-labeled molecules).
- Ignoring density and temperature fluctuations, equations of incompressible isothermal fluctuating hydrodynamics are

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla \pi + \nu \nabla^2 \mathbf{v} + \nabla \cdot \left(\sqrt{2\nu\rho^{-1} k_B T} \, \mathcal{W} \right)$$
$$\partial_t c + \mathbf{v} \cdot \nabla c = \chi \nabla^2 c + \nabla \cdot \left(\sqrt{2m\chi\rho^{-1} c(1-c)} \, \mathcal{W}^{(c)} \right),$$

where the **kinematic viscosity** $\nu = \eta/\rho$, and π is determined from incompressibility, $\nabla \cdot \mathbf{v} = 0$.

 We assume that *W* can be modeled as spatio-temporal white noise (a delta-correlated Gaussian random field), e.g.,

$$\langle \mathcal{W}_{ij}(\mathbf{r},t)\mathcal{W}_{kl}^{\star}(\mathbf{r}',t')\rangle = (\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk})\,\delta(t-t')\delta(\mathbf{r}-\mathbf{r}').$$

Fractal Fronts in Diffusive Mixing

Giant Fluctuations in Experiments

Experimental results by A. Vailati *et al.* from a microgravity environment [2] showing the enhancement of concentration fluctuations in space (box scale is **macroscopic**: 5mm on the side, 1mm thick)..

Fluctuating Hydrodynamics Equations

- Adding stochastic fluxes to the **non-linear** NS equations produces **ill-behaved stochastic PDEs** (solution is too irregular).
- No problem if we **linearize** the equations around a **steady mean state**, to obtain equations for the fluctuations around the mean.
- Finite-volume discretizations naturally impose a grid-scale **regularization** (smoothing) of the stochastic forcing.
- A renormalization of the transport coefficients is also necessary [1].
- We have algorithms and codes to solve the compressible equations (collocated and staggered grid), and recently also the incompressible and low Mach number ones (staggered grid) [4, 3].
- Solving these sort of equations numerically requires paying attention to **discrete fluctuation-dissipation balance**, in addition to the usual deterministic difficulties [4].

Finite-Volume Schemes

$$c_t = -\mathbf{v} \cdot \nabla c + \chi \nabla^2 c + \nabla \cdot \left(\sqrt{2\chi} \mathcal{W}\right) = \nabla \cdot \left[-c\mathbf{v} + \chi \nabla c + \sqrt{2\chi} \mathcal{W}\right]$$

• Generic finite-volume spatial discretization

$$\mathbf{c}_t = \mathbf{D}\left[\left(-\mathbf{V}\mathbf{c} + \mathbf{G}\mathbf{c} \right) + \sqrt{2\chi/\left(\Delta t \Delta V\right)} \mathbf{W} \right],$$

where D : faces \rightarrow cells is a **conservative** discrete divergence, G : cells \rightarrow faces is a discrete gradient.

- Here **W** is a collection of random normal numbers representing the (face-centered) stochastic fluxes.
- The divergence and gradient should be duals, $D^* = -G$.
- Advection should be **skew-adjoint** (non-dissipative) if $\nabla \cdot \mathbf{v} = 0$,

$$(DV)^* = -(DV)$$
 if $(DV)1 = 0$.

Weak Accuracy

Figure: Spectral power of the first solenoidal mode for an incompressible fluid as a function of the wavenumber. The left panel is for a (normalized) time step $\alpha = 0.5$, and the right for $\alpha = 0.25$.

Fluid-Structure Coupling

- We want to construct a **bidirectional coupling** between a fluctuating fluid and a small spherical **Brownian particle (blob)**.
- Macroscopic coupling between flow and a rigid sphere:
 - No-slip boundary condition at the surface of the Brownian particle.
 - Force on the bead is the integral of the (fluctuating) stress tensor over the surface.
- The above two conditions are **questionable at nanoscales**, but even worse, they are very hard to implement numerically in an efficient and stable manner.
- We saw already that fluctuations should be taken into account at the continuum level.

Brownian Particle Model

- Consider a **Brownian "particle"** of size *a* with position $\mathbf{q}(t)$ and velocity $\mathbf{u} = \dot{\mathbf{q}}$, and the velocity field for the fluid is $\mathbf{v}(\mathbf{r}, t)$.
- We do not care about the fine details of the flow around a particle, which is nothing like a hard sphere with stick boundaries in reality anyway.
- Take an **Immersed Boundary Method** (IBM) approach and describe the fluid-blob interaction using a localized smooth **kernel** $\delta_a(\Delta \mathbf{r})$ with compact support of size *a* (integrates to unity).
- Often presented as an interpolation function for point Lagrangian particles but here *a* is a **physical size** of the particle.
- We will call our particles "**blobs**" since they are not really point particles.

Incompressible Inertial Coupling

Local Averaging and Spreading Operators

• Postulate a **no-slip condition** between the particle and local fluid velocities,

$$\dot{\mathbf{q}} = \mathbf{u} = [\mathbf{J}(\mathbf{q})]\mathbf{v} = \int \delta_a (\mathbf{q} - \mathbf{r}) \mathbf{v}(\mathbf{r}, t) d\mathbf{r},$$

where the *local averaging* linear operator J(q) averages the fluid velocity inside the particle to estimate a local fluid velocity.

• The induced force density in the fluid because of the particle is:

$$\mathbf{f}=-\boldsymbol{\lambda}\delta_{a}\left(\mathbf{q}-\mathbf{r}\right)=-\left[\mathbf{S}\left(\mathbf{q}\right)\right]\boldsymbol{\lambda},$$

where the *local spreading* linear operator S(q) is the reverse (adjoint) of J(q).

 The physical volume of the particle ΔV is related to the shape and width of the kernel function via

$$\Delta V = (\mathbf{JS})^{-1} = \left[\int \delta_a^2(\mathbf{r}) \, d\mathbf{r} \right]^{-1}.$$
 (1)

Fluid-Structure Direct Coupling

• The equations of motion in our coupling approach are **postulated** [5] to be

$$\begin{split} \rho \left(\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} \right) &= -\nabla \pi - \nabla \cdot \boldsymbol{\sigma} - \left[\mathsf{S} \left(\mathsf{q} \right) \right] \boldsymbol{\lambda} + \text{thermal drift} \\ m_e \dot{\mathsf{u}} &= \mathsf{F} \left(\mathsf{q} \right) + \boldsymbol{\lambda} \\ \text{s.t. } \mathsf{u} &= \left[\mathsf{J} \left(\mathsf{q} \right) \right] \mathsf{v} \text{ and } \nabla \cdot \mathsf{v} = \mathbf{0}, \end{split}$$

where λ is the fluid-particle force, $F(q) = -\nabla U(q)$ is the externally applied force, and m_e is the excess mass of the particle.

• The stress tensor $\boldsymbol{\sigma} = \eta \left(\boldsymbol{\nabla} \mathbf{v} + \boldsymbol{\nabla}^T \mathbf{v} \right) + \boldsymbol{\Sigma}$ includes viscous (dissipative) and stochastic contributions. The stochastic stress

$$\boldsymbol{\Sigma} = \left(2k_B T\eta\right)^{1/2} \boldsymbol{\mathcal{W}}$$

drives the Brownian motion.

In the existing (stochastic) IBM approaches [6] inertial effects are ignored, m_e = 0 and thus λ = -F.

Incompressible Inertial Coupling

Momentum Conservation

- In the standard approach a frictional (dissipative) force $\lambda = -\zeta (\mathbf{u} \mathbf{J}\mathbf{v})$ is used instead of a constraint.
- In either coupling the total particle-fluid momentum is conserved,

$$\mathbf{P} = m_e \mathbf{u} + \int \rho \mathbf{v} (\mathbf{r}, t) \, d\mathbf{r}, \quad \frac{d\mathbf{P}}{dt} = \mathbf{F}.$$

• Define a *momentum field* as the sum of the fluid momentum and the spreading of the particle momentum,

$$\mathbf{p}(\mathbf{r},t) = \rho \mathbf{v} + m_e \mathbf{S} \mathbf{u} = (\rho + m_e \mathbf{S} \mathbf{J}) \mathbf{v}.$$

• Adding the fluid and particle equations gives a **local momentum** conservation law

$$\partial_t \mathbf{p} = -\boldsymbol{\nabla} \pi - \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} - \boldsymbol{\nabla} \cdot \left[\rho \mathbf{v} \mathbf{v}^T + m_e \mathbf{S} \left(\mathbf{u} \mathbf{u}^T \right) \right] + \mathbf{SF}.$$

Effective Inertia

• Eliminating $oldsymbol{\lambda}$ we get the particle equation of motion

$$m\dot{\mathbf{u}} = \Delta V \, \mathbf{J} \left(\boldsymbol{\nabla} \pi + \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} \right) + \mathbf{F} + \text{blob correction},$$

where the **effective mass** $m = m_e + m_f$ includes the mass of the "excluded" fluid

$$m_f = \rho \left(\mathsf{J}\mathsf{S} \right)^{-1} = \rho \Delta V = \rho \left[\int \delta_a^2 \left(\mathsf{r} \right) d\mathsf{r} \right]^{-1}$$

• For the fluid we get the effective equation

$$\boldsymbol{\rho}_{\text{eff}}\partial_t \mathbf{v} = -\left[\rho\left(\mathbf{v}\cdot\boldsymbol{\nabla}\right) + m_e \mathbf{S}\left(\mathbf{u}\cdot\frac{\partial}{\partial \mathbf{q}}\mathbf{J}\right)\right]\mathbf{v} - \boldsymbol{\nabla}\pi - \boldsymbol{\nabla}\cdot\boldsymbol{\sigma} + \mathbf{SF}$$

where the effective mass density matrix (operator) is

$$\rho_{\rm eff} = \rho + m_e \mathcal{P} SJ \mathcal{P},$$

where \mathcal{P} is the L_2 projection operator onto the linear subspace $\nabla \cdot \mathbf{v} = 0$, with the appropriate BCs.

Fluctuation-Dissipation Balance

- One must ensure **fluctuation-dissipation balance** in the coupled fluid-particle system.
- We can eliminate the particle velocity using the no-slip constraint, so only **v** and **q** are independent DOFs.
- This really means that the **stationary** (equilibrium) distribution must be the **Gibbs distribution**

$$P(\mathbf{v},\mathbf{q}) = Z^{-1} \exp\left[-\beta H\right]$$

where the Hamiltonian (coarse-grained free energy) is

$$\begin{split} \mathcal{H}\left(\mathbf{v},\mathbf{q}\right) &= U\left(\mathbf{q}\right) + m_{e}\frac{u^{2}}{2} + \int \rho \frac{v^{2}}{2} \, d\mathbf{r} \\ &= U\left(\mathbf{q}\right) + \int \frac{\mathbf{v}^{\mathsf{T}} \boldsymbol{\rho}_{\mathsf{eff}} \mathbf{v}}{2} \, d\mathbf{r} \end{split}$$

• No entropic contribution to the coarse-grained free energy because our formulation is isothermal and the particles do not have internal structure.

contd.

- A key ingredient of fluctuation-dissipation balance is that the fluid-particle **coupling is non-dissipative**, i.e., in the absence of viscous dissipation the kinetic energy *H* is conserved.
- $\bullet\,$ Crucial for energy conservation is that J(q) and S(q) are adjoint, $S=J^{\star},$

$$(\mathbf{J}\mathbf{v})\cdot\mathbf{u} = \int \mathbf{v}\cdot(\mathbf{S}\mathbf{u})\,d\mathbf{r} = \int \delta_{\mathbf{a}}\left(\mathbf{q}-\mathbf{r}\right)\left(\mathbf{v}\cdot\mathbf{u}\right)d\mathbf{r}.$$
 (2)

- The dynamics is **not incompressible in phase space** and "**thermal drift**" correction terms need to be included [6], but they turn out to **vanish** for incompressible flow (gradient of scalar).
- The spatial discretization should preserve these properties: **discrete fluctuation-dissipation balance (DFDB)**.

Numerical Scheme

- Both compressible (explicit) and incompressible schemes have been implemented by Florencio Balboa (UAM) on GPUs.
- Spatial discretization is based on previously-developed **staggered schemes** for fluctuating hydro [3] and the **IBM kernel functions** of Charles Peskin [7].
- Temporal discretization follows a second-order **splitting algorithm** (move particle + update momenta), and is limited in **stability** only by **advective CFL**.
- The scheme ensures **strict conservation** of momentum and (almost exactly) enforces the no-slip condition at the end of the time step.
- Continuing work on temporal integrators that ensure the correct equilibrium distribution and diffusive (Brownian) dynamics.

Temporal Integrator (sketch)

• Predict particle position at midpoint:

$$\mathbf{q}^{n+rac{1}{2}} = \mathbf{q}^n + rac{\Delta t}{2} \mathbf{J}^n \mathbf{v}^n.$$

• Solve unperturbed fluid equation using **stochastic Crank-Nicolson** for viscous+stochastic:

Numerics

$$\rho \frac{\tilde{\mathbf{v}}^{n+1} - \mathbf{v}^n}{\Delta t} + \nabla \tilde{\pi} = \frac{\eta}{2} \mathbf{L} \left(\tilde{\mathbf{v}}^{n+1} + \mathbf{v}^n \right) + \nabla \cdot \mathbf{\Sigma}^n + \mathbf{S}^{n+\frac{1}{2}} \mathbf{F}^{n+\frac{1}{2}} + \operatorname{adv.},$$
$$\nabla \cdot \tilde{\mathbf{v}}^{n+1} = 0,$$

where we use the **Adams-Bashforth method** for the advective (kinetic) fluxes, and the discretization of the stochastic flux is described in Ref. [3],

$$\mathbf{\Sigma}^n = \left(\frac{2k_B T \eta}{\Delta V \,\Delta t}\right)^{1/2} \mathbf{W}^n,$$

where \mathbf{W}^n is a (symmetrized) collection of i.i.d. unit normal variates.

contd.

Solve for inertial velocity perturbation from the particle Δv (too technical to present), and update:

$$\mathbf{v}^{n+1} = \tilde{\mathbf{v}}^{n+1} + \Delta \mathbf{v}.$$

If neutrally-buyoant $m_e = 0$ this is a non-step, $\Delta \mathbf{v} = \mathbf{0}$.

Update particle velocity in a momentum conserving manner,

$$\mathbf{u}^{n+1} = \mathbf{J}^{n+\frac{1}{2}} \mathbf{v}^{n+1} + \text{conservation correction.}$$

• Correct particle position,

$$\mathbf{q}^{n+1} = \mathbf{q}^n + rac{\Delta t}{2} \mathbf{J}^{n+rac{1}{2}} \left(\mathbf{v}^{n+1} + \mathbf{v}^n
ight).$$

Passively-Advected (Fluorescent) Tracers

Velocity Autocorrelation Function

• We investigate the **velocity autocorrelation function** (VACF) for the immersed particle

$$C(t) = \langle \mathbf{u}(t_0) \cdot \mathbf{u}(t_0 + t) \rangle$$

- From equipartition theorem C(0) = kT/m.
- However, for an incompressible fluid the kinetic energy of the particle that is **less than equipartition**,

$$\langle u^2
angle = \left[1 + rac{m_f}{(d-1)m}
ight]^{-1} \left(d rac{k_B T}{m}
ight),$$

as predicted also for a rigid sphere a long time ago, $m_f/m = \rho'/\rho$.

• Hydrodynamic persistence (conservation) gives a **long-time power-law tail** $C(t) \sim (kT/m)(t/t_{visc})^{-3/2}$ not reproduced in Brownian dynamics.

Numerical VACF

Figure: (F. Balboa) VACF for a blob with $m_e = m_f = \rho \Delta V$.

Immersed Rigid Blobs

- Unlike a **rigid sphere**, a blob particle would not perturb a pure shear flow.
- In the far field our blob particle looks like a force monopole (stokeset), and does not exert a force dipole (stresslet) on the fluid.
- Similarly, since here we do not include **angular velocity** degrees of freedom, our blob particle does not exert a **torque** on the fluid (rotlet).
- It is possible to include rotlet and stresslet terms, as done in the force coupling method [8] and Stokesian Dynamics in the deterministic setting.
- Proper inclusion of inertial terms and fluctuation-dissipation balance not studied carefully yet...

Outlook

Immersed Rigid Bodies

• This approach can be extended to immersed rigid bodies (see work by Neelesh Patankar)

$$\begin{split} \rho \left(\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} \right) &= -\nabla \pi - \nabla \cdot \boldsymbol{\sigma} - \int_{\Omega} \mathbf{S} \left(\mathbf{q} \right) \lambda \left(\mathbf{q} \right) d\mathbf{q} + \text{th. drift} \\ m_e \dot{\mathbf{u}} &= \mathbf{F} + \int_{\Omega} \lambda \left(\mathbf{q} \right) d\mathbf{q} \\ l_e \dot{\boldsymbol{\omega}} &= \tau + \int_{\Omega} \left[\mathbf{q} \times \lambda \left(\mathbf{q} \right) \right] d\mathbf{q} \\ \left[\mathbf{J} \left(\mathbf{q} \right) \right] \mathbf{v} &= \mathbf{u} + \mathbf{q} \times \boldsymbol{\omega} \text{ for all } \mathbf{q} \in \Omega \\ \nabla \cdot \mathbf{v} &= 0 \text{ everywhere.} \end{split}$$

Here ω is the immersed body angular velocity, τ is the applied torque, and I_e is the **excess moment of inertia** of the particle.

- The nonlinear advective terms are tricky, though it may not be a problem at low Reynolds number...
- Fluctuation-dissipation balance needs to be studied carefully...

Conclusions

- Fluctuations are **not just a microscopic phenomenon**: giant fluctuations can reach macroscopic dimensions or certainly dimensions much larger than molecular.
- Fluctuating hydrodynamics seems to be a very good coarse-grained model for fluids, despite unresolved issues.
- **Particle inertia** can be included in the coupling between blob particles and a fluctuating incompressible fluid.
- Even coarse-grained methods need to be accelerated due to **large separation of time scales** between advective and diffusive phenomena.
- One can take the **overdamped** (Brownian dynamics) **limit** but it would be much better to construct **many-scale temporal integrators** that are accurate even when they under-resolve the fast fluctuations.

Outlook

References

A. Donev, A. L. Garcia, Anton de la Fuente, and J. B. Bell.

Enhancement of Diffusive Transport by Nonequilibrium Thermal Fluctuations. J. of Statistical Mechanics: Theory and Experiment, 2011:P06014, 2011.

A. Vailati, R. Cerbino, S. Mazzoni, C. J. Takacs, D. S. Cannell, and M. Giglio. Fractal fronts of diffusion in microgravity. *Nature Communications*, 2:290, 2011.

F. Balboa Usabiaga, J. B. Bell, R. Delgado-Buscalioni, A. Donev, T. G. Fai, B. E. Griffith, and C. S. Peskin. Staggered Schemes for Incompressible Fluctuating Hydrodynamics. To appear in SIAM J. Multiscale Modeling and Simulation, 2012.

A. Donev, E. Vanden-Eijnden, A. L. Garcia, and J. B. Bell.

On the Accuracy of Explicit Finite-Volume Schemes for Fluctuating Hydrodynamics. CAMCOS, 5(2):149–197, 2010.

F. Balboa Usabiaga, I. Pagonabarraga, and R. Delgado-Buscalioni.

Inertial coupling for point particle fluctuating hydrodynamics. In preparation, 2011.

P. J. Atzberger.

Stochastic Eulerian-Lagrangian Methods for Fluid-Structure Interactions with Thermal Fluctuations. J. Comp. Phys., 230:2821–2837, 2011.

C.S. Peskin.

The immersed boundary method. Acta Numerica, 11:479-517, 2002.

S. Lomholt and M.R. Maxey.

Force-coupling method for particulate two-phase flow: Stokes flow. J. Comp. Phys., 184(2):381–405, 2003.