Coupling an Incompressible Fluctuating Fluid with Suspended Structures

Aleksandar Donev

Courant Institute, New York University &
Rafael Delgado-Buscalioni, UAM
Florencio "Balboa" Usabiaga, UAM
Boyce Griffith, Courant

Workshop on Fluid-Structure Interactions in Soft-Matter Systems
Monash University Prato Center, Prato, Italy
November 2012

Outline

- 1 Incompressible Inertial Coupling
- 2 Numerics
- Results
- 4 Outlook

Levels of Coarse-Graining

Figure: From Pep Español, "Statistical Mechanics of Coarse-Graining"

A. Donev (CIMS) IICM 11/2012 3 / 30

Fluid-Structure Coupling

- We want to construct a bidirectional coupling between a fluctuating fluid and a small spherical Brownian particle (blob).
- Macroscopic coupling between flow and a rigid sphere:
 - No-slip boundary condition at the surface of the Brownian particle.
 - Force on the bead is the integral of the (fluctuating) stress tensor over the surface.
- The above two conditions are questionable at nanoscales, but even worse, they are very hard to implement numerically in an efficient and stable manner.
- We saw already that fluctuations should be taken into account at the continuum level.

A. Donev (CIMS) IICM 11/2012 5 / 30

Brownian Particle Model

- Consider a **Brownian "particle"** of size a with position $\mathbf{q}(t)$ and velocity $\mathbf{u} = \dot{\mathbf{q}}$, and the velocity field for the fluid is $\mathbf{v}(\mathbf{r}, t)$.
- We do not care about the fine details of the flow around a particle, which is nothing like a hard sphere with stick boundaries in reality anyway.
- Take an **Immersed Boundary Method** (IBM) approach and describe the fluid-blob interaction using a localized smooth **kernel** $\delta_a(\Delta \mathbf{r})$ with compact support of size a (integrates to unity).
- Often presented as an interpolation function for point Lagrangian particles but here *a* is a **physical size** of the particle.
- We will call our particles "blobs" since they are not really point particles.

A. Donev (CIMS) IICM 11/2012 6 / 30

Local Averaging and Spreading Operators

 Postulate a no-slip condition between the particle and local fluid velocities,

$$\dot{\mathbf{q}} = \mathbf{u} = [\mathbf{J}(\mathbf{q})]\mathbf{v} = \int \delta_{\mathbf{a}}(\mathbf{q} - \mathbf{r})\mathbf{v}(\mathbf{r}, t) d\mathbf{r},$$

where the *local averaging* linear operator J(q) averages the fluid velocity inside the particle to estimate a local fluid velocity.

• The induced force density in the fluid because of the particle is:

$$\mathbf{f} = -\lambda \delta_a (\mathbf{q} - \mathbf{r}) = - [\mathbf{S}(\mathbf{q})] \lambda,$$

where the *local spreading* linear operator $\mathbf{S}(\mathbf{q})$ is the reverse (adjoint) of $\mathbf{J}(\mathbf{q})$.

• The physical **volume** of the particle ΔV is related to the shape and width of the kernel function via

$$\Delta V = (\mathbf{JS})^{-1} = \left[\int \delta_a^2(\mathbf{r}) \, d\mathbf{r} \right]^{-1}. \tag{1}$$

A. Donev (CIMS) IICM 11/2012 7 / 30

Fluid-Structure Direct Coupling

 The equations of motion in our coupling approach are postulated [1] to be

$$\begin{split} \rho\left(\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v}\right) &= -\nabla \pi - \nabla \cdot \boldsymbol{\sigma} - \left[\mathbf{S}\left(\mathbf{q}\right)\right] \boldsymbol{\lambda} + \text{'thermal' drift} \\ m_e \dot{\mathbf{u}} &= \mathbf{F}\left(\mathbf{q}\right) + \boldsymbol{\lambda} \\ \text{s.t. } \mathbf{u} &= \left[\mathbf{J}\left(\mathbf{q}\right)\right] \mathbf{v} \text{ and } \nabla \cdot \mathbf{v} = 0, \end{split}$$

where λ is the fluid-particle force, $F(q) = -\nabla U(q)$ is the externally applied force, and m_e is the excess mass of the particle.

• The stress tensor $\sigma = \eta \left(\nabla \mathbf{v} + \nabla^T \mathbf{v} \right) + \mathbf{\Sigma}$ includes viscous (dissipative) and stochastic contributions. The **stochastic stress**

$$\mathbf{\Sigma} = (k_B T \eta)^{1/2} \left(\mathbf{\mathcal{W}} + \mathbf{\mathcal{W}}^T \right)$$

drives the Brownian motion.

• In the existing (stochastic) IBM approaches [2] **inertial effects** are ignored, $m_e = 0$ and thus $\lambda = -\mathbf{F}$.

A. Donev (CIMS) IICM 11/2012 8 / 30

Momentum Conservation

- In the standard approach a frictional (dissipative) force $\lambda = -\zeta \left(\mathbf{u} \mathbf{J}\mathbf{v}\right)$ is used instead of a constraint.
- In either coupling the total particle-fluid momentum is conserved,

$$\mathbf{P} = m_e \mathbf{u} + \int \rho \mathbf{v} (\mathbf{r}, t) d\mathbf{r}, \quad \frac{d\mathbf{P}}{dt} = \mathbf{F}.$$

 Define a momentum field as the sum of the fluid momentum and the spreading of the particle momentum,

$$\mathbf{p}(\mathbf{r},t) = \rho \mathbf{v} + m_e \mathbf{S} \mathbf{u} = (\rho + m_e \mathbf{S} \mathbf{J}) \mathbf{v}.$$

 Adding the fluid and particle equations gives a local momentum conservation law

$$\partial_t \mathbf{p} = -\mathbf{\nabla} \pi - \mathbf{\nabla} \cdot \boldsymbol{\sigma} - \mathbf{\nabla} \cdot \left[
ho \mathbf{v} \mathbf{v}^T + m_{\mathrm{e}} \mathbf{S} \left(\mathbf{u} \mathbf{u}^T
ight)
ight] + \mathbf{S} \mathbf{F}.$$

A. Donev (CIMS) IICM 11/2012 9 / 30

Effective Inertia

ullet Eliminating $oldsymbol{\lambda}$ we get the particle equation of motion

$$m\dot{\mathbf{u}} = \Delta V \mathbf{J} (\mathbf{\nabla} \pi + \mathbf{\nabla} \cdot \boldsymbol{\sigma}) + \mathbf{F} + \text{blob correction},$$

where the **effective mass** $m=m_{\rm e}+m_{\rm f}$ includes the mass of the "excluded" fluid

$$m_f = \rho \Delta V = \rho \left(\mathsf{JS} \right)^{-1}$$
.

• For the fluid we get the effective equation

$$\rho_{\text{eff}} \partial_t \mathbf{v} = -\left[\rho\left(\mathbf{v} \cdot \mathbf{\nabla}\right) + m_e \mathbf{S}\left(\mathbf{u} \cdot \frac{\partial}{\partial \mathbf{q}} \mathbf{J}\right)\right] \mathbf{v} - \mathbf{\nabla}\pi - \mathbf{\nabla} \cdot \boldsymbol{\sigma} + \mathbf{SF}$$

where the effective mass density matrix (operator) is

$$\rho_{\text{eff}} = \rho + m_{\text{e}} \mathcal{P} SJ \mathcal{P},$$

where \mathcal{P} is the L_2 **projection operator** onto the linear subspace $\nabla \cdot \mathbf{v} = 0$, with the appropriate BCs.

10 / 30

Fluctuation-Dissipation Balance

- One must ensure fluctuation-dissipation balance in the coupled fluid-particle system.
- We can eliminate the particle velocity using the no-slip constraint, so only v and q are independent DOFs.
- This really means that the stationary (equilibrium) distribution must be the Gibbs distribution

$$P\left(\mathbf{v},\mathbf{q}\right) = Z^{-1} \exp\left[-\beta H\right]$$

where the Hamiltonian (coarse-grained free energy) is

$$H(\mathbf{v}, \mathbf{q}) = U(\mathbf{q}) + m_{e} \frac{u^{2}}{2} + \int \rho \frac{\mathbf{v}^{2}}{2} d\mathbf{r}.$$
$$= U(\mathbf{q}) + \int \frac{\mathbf{v}^{T} \rho_{eff} \mathbf{v}}{2} d\mathbf{r}$$

 No entropic contribution to the coarse-grained free energy because our formulation is isothermal and the particles do not have internal structure.

contd.

- A key ingredient of fluctuation-dissipation balance is that that the fluid-particle coupling is non-dissipative, i.e., in the absence of viscous dissipation the kinetic energy H is conserved.
- Crucial for energy conservation is that J(q) and S(q) are adjoint, $S=J^{\star}$,

$$(\mathbf{J}\mathbf{v})\cdot\mathbf{u} = \int \mathbf{v}\cdot(\mathbf{S}\mathbf{u})\,d\mathbf{r} = \int \delta_{a}\left(\mathbf{q}-\mathbf{r}\right)\left(\mathbf{v}\cdot\mathbf{u}\right)d\mathbf{r}.\tag{2}$$

- The dynamics is **not incompressible in phase space** and "**thermal drift**" correction terms need to be included [2], but they turn out to **vanish** for incompressible flow (gradient of scalar).
- The spatial discretization should preserve these properties: **discrete fluctuation-dissipation balance (DFDB)**.

Numerical Scheme

- Both compressible (explicit) and incompressible schemes have been implemented by Florencio Balboa (UAM) on GPUs.
- Spatial discretization is based on previously-developed staggered schemes for fluctuating hydro [3] and the IBM kernel functions of Charles Peskin [4].
- Temporal discretization follows a second-order splitting algorithm (move particle + update momenta), and is limited in stability only by advective CFL.
- The scheme ensures strict conservation of momentum and (almost exactly) enforces the no-slip condition at the end of the time step.
- Continuing work on temporal integrators that ensure the correct equilibrium distribution and diffusive (Brownian) dynamics.

Temporal Integrator (sketch)

Predict particle position at midpoint:

$$\mathbf{q}^{n+\frac{1}{2}} = \mathbf{q}^n + \frac{\Delta t}{2} \mathbf{J}^n \mathbf{v}^n.$$

 Solve unperturbed fluid equation using stochastic Crank-Nicolson for viscous+stochastic:

$$\rho \frac{\tilde{\mathbf{v}}^{n+1} - \mathbf{v}^n}{\Delta t} + \nabla \tilde{\pi} = \frac{\eta}{2} \mathbf{L} \left(\tilde{\mathbf{v}}^{n+1} + \mathbf{v}^n \right) + \nabla \cdot \mathbf{\Sigma}^n + \mathbf{S}^{n+\frac{1}{2}} \mathbf{F}^{n+\frac{1}{2}} + \mathsf{adv.},$$

$$\nabla \cdot \tilde{\mathbf{v}}^{n+1} = 0,$$

where we use the **Adams-Bashforth method** for the advective (kinetic) fluxes, and the discretization of the stochastic flux is described in Ref. [3],

$$\mathbf{\Sigma}^{n} = \left(\frac{k_{B}T\eta}{\Delta V \Delta t}\right)^{1/2} \left[\left(\mathbf{W}^{n}\right) + \left(\mathbf{W}^{n}\right)^{T} \right],$$

where \mathbf{W}^n is a (symmetrized) collection of i.i.d. unit normal variates.

A. Donev (CIMS) IICM 11/2012 15 / 30

contd.

• Solve for inertial **velocity perturbation** from the particle Δv (too technical to present), and update:

$$\mathbf{v}^{n+1} = \tilde{\mathbf{v}}^{n+1} + \Delta \mathbf{v}.$$

If neutrally-buyoant $m_e = 0$ this is a non-step, $\Delta \mathbf{v} = \mathbf{0}$.

• Update particle velocity in a momentum conserving manner,

$$\mathbf{u}^{n+1} = \mathbf{J}^{n+\frac{1}{2}}\mathbf{v}^{n+1} + \text{slip correction.}$$

Correct particle position,

$$\mathbf{q}^{n+1} = \mathbf{q}^n + \frac{\Delta t}{2} \mathbf{J}^{n+\frac{1}{2}} \left(\mathbf{v}^{n+1} + \mathbf{v}^n \right).$$

Implementation

- With periodic boundary conditions all required linear solvers (Poisson, Helmholtz) can be done using FFTs only.
- Florencio Balboa has implemented the algorithm on GPUs using CUDA in a public-domain code (combines compressible and incompressible algorithms):
 - https://code.google.com/p/fluam
- Our implicit algorithm is able to take a rather large time step size, as measured by the advective and viscous CFL numbers:

$$\alpha = \frac{V\Delta t}{\Delta x}, \quad \beta = \frac{\nu \Delta t}{\Delta x^2},\tag{3}$$

where V is a typical advection speed.

- Note that for compressible flow there is a sonic CFL number $\alpha_s = c\Delta t/\Delta x \gg \alpha$, where c is the speed of sound.
- Our scheme should be used with $\alpha \lesssim 1$. The scheme is stable for any β , but to get the correct thermal dynamics one should use $\beta \lesssim 1$.

A. Donev (CIMS) IICM 11/2012 17 / 30

Equilibrium Radial Correlation Function

Figure: Equilibrium radial distribution function $g_2(\mathbf{r})$ for a suspension of blobs interacting with a repulsive LJ (WCA) potential. 19 / 30

Hydrodynamic Interactions

Figure: Effective hydrodynamic force between two approaching blobs at small Reynolds numbers, $\frac{F}{F_{\rm St}}=-\frac{2F_0}{6\pi\eta R_H v_r}$.

A. Donev (CIMS) IICM 11/2012 20 / 30

Velocity Autocorrelation Function

 We investigate the velocity autocorrelation function (VACF) for the immersed particle

$$C(t) = \langle \mathbf{u}(t_0) \cdot \mathbf{u}(t_0 + t) \rangle$$

- From equipartition theorem $C(0) = \langle u^2 \rangle = d \frac{k_B T}{m}$.
- However, for an incompressible fluid the kinetic energy of the particle that is **less than equipartition**,

$$\langle u^2 \rangle = \left[1 + rac{m_f}{(d-1)m}
ight]^{-1} \left(d rac{k_B T}{m}
ight),$$

as predicted also for a rigid sphere a long time ago, $m_f/m = \rho'/\rho$.

• Hydrodynamic persistence (conservation) gives a **long-time** power-law tail $C(t) \sim (kT/m)(t/t_{\rm visc})^{-3/2}$ not reproduced in Brownian dynamics.

A. Donev (CIMS) IICM 11/2012 21 / 30

Numerical VACF

Figure: VACF for a blob with $m_e = m_f = \rho \Delta V$.

Diffusive Dynamics

• At long times, the motion of the particle is diffusive with a diffusion coefficient $\chi = \lim_{t \to \infty} \chi(t) = \int_{t=0}^{\infty} C(t)dt$, where

$$\chi(t) = \frac{\Delta q^2(t)}{2t} = \frac{1}{2dt} \langle [\mathbf{q}(t) - \mathbf{q}(0)]^2 \rangle.$$

- The dimensionless Schmidt number $S_c = \nu/\chi$ controls the separation of time scales between $\mathbf{v}(\mathbf{r},t)$ and $\mathbf{q}(t)$.
- For $S_c \gg 1$ the Stokes-Einstein relation predicts

$$\chi = \frac{k_B T}{6\pi \eta R_H},\tag{4}$$

where for our blob with the 3-point kernel function $R_H \approx 0.9 \Delta x$.

• Self-consistent theory [6] predicts a correction to Stokes-Einstein's relation,

$$\chi\left(\nu + \frac{\chi}{2}\right) = \frac{k_B T}{6\pi\rho R_H}.$$

A. Donev (CIMS) IICM 11/2012 23 / 30

Stokes-Einstein Corrections (preliminary)

Figure: Corrections to Stokes-Einstein with changing viscosity $\nu=\eta/\rho$, $m_{\rm e}=m_{\rm f}=\rho\Delta V$.

Passively-Advected (Fluorescent) Tracers

Immersed Rigid Blobs

- Unlike a rigid sphere, a blob particle would not perturb a pure shear flow.
- In the far field our blob particle looks like a force monopole (stokeset), and does not exert a force dipole (stresslet) on the fluid.
- Similarly, since here we do not include angular velocity degrees of freedom, our blob particle does not exert a torque on the fluid (rotlet).
- It is possible to include rotlet and stresslet terms, as done in the force coupling method [7] and Stokesian Dynamics in the deterministic setting.
- Proper inclusion of inertial terms and fluctuation-dissipation balance not studied carefully yet...

Immersed Rigid Bodies

 This approach can be extended to immersed rigid bodies (work with Neelesh Patankar)

$$ho\left(\partial_t\mathbf{v}+\mathbf{v}\cdot\mathbf{\nabla}\mathbf{v}
ight) = -\mathbf{\nabla}\pi-\mathbf{\nabla}\cdot\boldsymbol{\sigma}-\int_{\Omega}\mathbf{S}\left(\mathbf{q}
ight)\lambda\left(\mathbf{q}
ight)d\mathbf{q} + \mathrm{th.}$$
 drift $m_{\mathrm{e}}\dot{\mathbf{u}} = \mathbf{F}+\int_{\Omega}\lambda\left(\mathbf{q}
ight)d\mathbf{q}$ $l_{\mathrm{e}}\dot{\boldsymbol{\omega}} = \boldsymbol{\tau}+\int_{\Omega}\left[\mathbf{q}\times\lambda\left(\mathbf{q}
ight)\right]d\mathbf{q}$ $\left[\mathbf{J}\left(\mathbf{q}
ight)\right]\mathbf{v} = \mathbf{u}+\mathbf{q}\times\boldsymbol{\omega}$ for all $\mathbf{q}\in\Omega$ $\mathbf{\nabla}\cdot\mathbf{v} = 0$ everywhere.

Here ω is the immersed body angular velocity, τ is the applied torque, and I_e is the excess moment of inertia of the particle.

- The nonlinear advective terms are tricky, though it may not be a problem at low Reynolds number...
- Fluctuation-dissipation balance needs to be studied carefully...

A. Doney (CIMS) IICM 11/2012 28 / 30

Conclusions

- Fluctuations are not just a microscopic phenomenon: giant fluctuations can reach macroscopic dimensions or certainly dimensions much larger than molecular.
- Fluctuating hydrodynamics seems to be a very good coarse-grained model for fluids, despite unresolved issues.
- Particle inertia can be included in the coupling between blob particles and a fluctuating incompressible fluid.
- Even coarse-grained methods need to be accelerated due to large separation of time scales between advective and diffusive phenomena.
- One can take the **overdamped** (Brownian dynamics) **limit**: See work by Atzberger *et al.* [5] for specialized exponential integrators for $\beta \gg 1$ for $m_e = 0$.

A. Donev (CIMS) IICM 11/2012 29 / 30

References

F. Balboa Usabiaga, I. Pagonabarraga, and R. Delgado-Buscalioni.

To appear in SIAM J. Multiscale Modeling and Simulation, 2012.

Inertial coupling for point particle fluctuating hydrodynamics.

To appear in J. Comp. Phys., 2012.

P. J. Atzberger.

Stochastic Eulerian-Lagrangian Methods for Fluid-Structure Interactions with Thermal Fluctuations.

J. Comp. Phys., 230:2821-2837, 2011.

F. Balboa Usabiaga, J. B. Bell, R. Delgado-Buscalioni, A. Donev, T. G. Fai, B. E. Griffith, and C. S. Peskin. Staggered Schemes for Incompressible Fluctuating Hydrodynamics.

C.S. Peskin.

The immersed boundary method.

Acta Numerica, 11:479-517, 2002.

P. J. Atzberger, P. R. Kramer, and C. S. Peskin.

A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales.

J. Comp. Phys., 224:1255-1292, 2007.

Prototype codes at http://www.math.ucsb.edu/~atzberg/SIB_Codes.

A. Donev, A. L. Garcia, Anton de la Fuente, and J. B. Bell.

Enhancement of Diffusive Transport by Nonequilibrium Thermal Fluctuations.

J. of Statistical Mechanics: Theory and Experiment, 2011:P06014, 2011.

S. Lomholt and M.R. Maxey.

Force-coupling method for particulate two-phase flow: Stokes flow.

J. Comp. Phys., 184(2):381-405, 2003.