
Coupling an Incompressible Fluctuating Fluid with
Suspended Structures

Aleksandar Donev

Courant Institute, New York University
&

Rafael Delgado-Buscalioni, UAM
Florencio “Balboa” Usabiaga, UAM

Boyce Griffith, Courant

Workshop on Fluid-Structure Interactions in Soft-Matter Systems
Monash University Prato Center, Prato, Italy

November 2012

A. Donev (CIMS) IICM 11/2012 1 / 30



Outline

1 Incompressible Inertial Coupling

2 Numerics

3 Results

4 Outlook

A. Donev (CIMS) IICM 11/2012 2 / 30



Levels of Coarse-Graining

Figure: From Pep Español, “Statistical Mechanics of Coarse-Graining”
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Incompressible Inertial Coupling

Fluid-Structure Coupling

We want to construct a bidirectional coupling between a fluctuating
fluid and a small spherical Brownian particle (blob).

Macroscopic coupling between flow and a rigid sphere:

No-slip boundary condition at the surface of the Brownian particle.
Force on the bead is the integral of the (fluctuating) stress tensor over
the surface.

The above two conditions are questionable at nanoscales, but even
worse, they are very hard to implement numerically in an efficient and
stable manner.

We saw already that fluctuations should be taken into account at
the continuum level.
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Incompressible Inertial Coupling

Brownian Particle Model

Consider a Brownian “particle” of size a with position q(t) and
velocity u = q̇, and the velocity field for the fluid is v(r, t).

We do not care about the fine details of the flow around a particle,
which is nothing like a hard sphere with stick boundaries in reality
anyway.

Take an Immersed Boundary Method (IBM) approach and describe
the fluid-blob interaction using a localized smooth kernel δa(∆r) with
compact support of size a (integrates to unity).

Often presented as an interpolation function for point Lagrangian
particles but here a is a physical size of the particle.

We will call our particles “blobs” since they are not really point
particles.
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Incompressible Inertial Coupling

Local Averaging and Spreading Operators

Postulate a no-slip condition between the particle and local fluid
velocities,

q̇ = u = [J (q)] v =

∫
δa (q− r) v (r, t) dr,

where the local averaging linear operator J(q) averages the fluid
velocity inside the particle to estimate a local fluid velocity.

The induced force density in the fluid because of the particle is:

f = −λδa (q− r) = − [S (q)]λ,

where the local spreading linear operator S(q) is the reverse (adjoint)
of J(q).

The physical volume of the particle ∆V is related to the shape and
width of the kernel function via

∆V = (JS)−1 =

[∫
δ2
a (r) dr

]−1

. (1)
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Incompressible Inertial Coupling

Fluid-Structure Direct Coupling

The equations of motion in our coupling approach are postulated [1]
to be

ρ (∂tv + v ·∇v) = −∇π −∇ · σ − [S (q)]λ+ ’thermal’ drift

me u̇ = F (q) + λ

s.t. u = [J (q)] v and ∇ · v = 0,

where λ is the fluid-particle force, F (q) = −∇U (q) is the
externally applied force, and me is the excess mass of the particle.

The stress tensor σ = η
(
∇v + ∇Tv

)
+ Σ includes viscous

(dissipative) and stochastic contributions. The stochastic stress

Σ = (kBTη)1/2 (W + WT
)

drives the Brownian motion.

In the existing (stochastic) IBM approaches [2] inertial effects are
ignored, me = 0 and thus λ = −F.
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Incompressible Inertial Coupling

Momentum Conservation

In the standard approach a frictional (dissipative) force
λ = −ζ (u− Jv) is used instead of a constraint.

In either coupling the total particle-fluid momentum is conserved,

P = meu +

∫
ρv (r, t) dr,

dP

dt
= F.

Define a momentum field as the sum of the fluid momentum and the
spreading of the particle momentum,

p (r, t) = ρv + meSu = (ρ+ meSJ) v.

Adding the fluid and particle equations gives a local momentum
conservation law

∂tp = −∇π −∇ · σ −∇ ·
[
ρvvT + meS

(
uuT

)]
+ SF.
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Incompressible Inertial Coupling

Effective Inertia

Eliminating λ we get the particle equation of motion

mu̇ = ∆V J (∇π + ∇ · σ) + F + blob correction,

where the effective mass m = me + mf includes the mass of the
“excluded” fluid

mf = ρ∆V = ρ (JS)−1 .

For the fluid we get the effective equation

ρeff∂tv = −
[
ρ (v ·∇) + meS

(
u · ∂

∂q
J

)]
v −∇π −∇ · σ + SF

where the effective mass density matrix (operator) is

ρeff = ρ+ mePSJP ,

where P is the L2 projection operator onto the linear subspace
∇ · v = 0, with the appropriate BCs.
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Incompressible Inertial Coupling

Fluctuation-Dissipation Balance

One must ensure fluctuation-dissipation balance in the coupled
fluid-particle system.
We can eliminate the particle velocity using the no-slip constraint, so
only v and q are independent DOFs.
This really means that the stationary (equilibrium) distribution must
be the Gibbs distribution

P (v,q) = Z−1 exp [−βH]

where the Hamiltonian (coarse-grained free energy) is

H (v,q) = U (q) + me
u2

2
+

∫
ρ

v 2

2
dr.

= U (q) +

∫
vTρeffv

2
dr

No entropic contribution to the coarse-grained free energy because
our formulation is isothermal and the particles do not have internal
structure.
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Incompressible Inertial Coupling

contd.

A key ingredient of fluctuation-dissipation balance is that that the
fluid-particle coupling is non-dissipative, i.e., in the absence of
viscous dissipation the kinetic energy H is conserved.

Crucial for energy conservation is that J(q) and S(q) are adjoint,
S = J?,

(Jv) · u =

∫
v · (Su) dr =

∫
δa (q− r) (v · u) dr. (2)

The dynamics is not incompressible in phase space and “thermal
drift” correction terms need to be included [2], but they turn out to
vanish for incompressible flow (gradient of scalar).

The spatial discretization should preserve these properties: discrete
fluctuation-dissipation balance (DFDB).
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Numerics

Numerical Scheme

Both compressible (explicit) and incompressible schemes have been
implemented by Florencio Balboa (UAM) on GPUs.

Spatial discretization is based on previously-developed staggered
schemes for fluctuating hydro [3] and the IBM kernel functions of
Charles Peskin [4].

Temporal discretization follows a second-order splitting algorithm
(move particle + update momenta), and is limited in stability only by
advective CFL.

The scheme ensures strict conservation of momentum and (almost
exactly) enforces the no-slip condition at the end of the time step.

Continuing work on temporal integrators that ensure the correct
equilibrium distribution and diffusive (Brownian) dynamics.
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Numerics

Temporal Integrator (sketch)

Predict particle position at midpoint:

qn+ 1
2 = qn +

∆t

2
Jnvn.

Solve unperturbed fluid equation using stochastic Crank-Nicolson
for viscous+stochastic:

ρ
ṽn+1 − vn

∆t
+ ∇π̃ =

η

2
L
(
ṽn+1 + vn

)
+ ∇ ·Σn + Sn+ 1

2 Fn+ 1
2 + adv.,

∇ · ṽn+1 = 0,

where we use the Adams-Bashforth method for the advective
(kinetic) fluxes, and the discretization of the stochastic flux is
described in Ref. [3],

Σn =

(
kBTη

∆V ∆t

)1/2 [
(Wn) + (Wn)T

]
,

where Wn is a (symmetrized) collection of i.i.d. unit normal variates.
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Numerics

contd.

Solve for inertial velocity perturbation from the particle ∆v (too
technical to present), and update:

vn+1 = ṽn+1 + ∆v.

If neutrally-buyoant me = 0 this is a non-step, ∆v = 0.

Update particle velocity in a momentum conserving manner,

un+1 = Jn+ 1
2 vn+1 + slip correction.

Correct particle position,

qn+1 = qn +
∆t

2
Jn+ 1

2
(
vn+1 + vn

)
.
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Numerics

Implementation

With periodic boundary conditions all required linear solvers (Poisson,
Helmholtz) can be done using FFTs only.

Florencio Balboa has implemented the algorithm on GPUs using
CUDA in a public-domain code (combines compressible and
incompressible algorithms):
https://code.google.com/p/fluam

Our implicit algorithm is able to take a rather large time step size, as
measured by the advective and viscous CFL numbers:

α =
V ∆t

∆x
, β =

ν∆t

∆x2
, (3)

where V is a typical advection speed.

Note that for compressible flow there is a sonic CFL number
αs = c∆t/∆x � α, where c is the speed of sound.

Our scheme should be used with α . 1. The scheme is stable for any
β, but to get the correct thermal dynamics one should use β . 1.
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Results

Equilibrium Radial Correlation Function
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Figure: Equilibrium radial distribution function g2 (r) for a suspension of blobs
interacting with a repulsive LJ (WCA) potential.
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Results

Hydrodynamic Interactions
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Results

Velocity Autocorrelation Function

We investigate the velocity autocorrelation function (VACF) for
the immersed particle

C (t) = 〈u(t0) · u(t0 + t)〉

From equipartition theorem C (0) = 〈u2〉 = d kBT
m .

However, for an incompressible fluid the kinetic energy of the particle
that is less than equipartition,

〈u2〉 =

[
1 +

mf

(d − 1)m

]−1(
d

kBT

m

)
,

as predicted also for a rigid sphere a long time ago, mf /m = ρ′/ρ.

Hydrodynamic persistence (conservation) gives a long-time
power-law tail C (t) ∼ (kT/m)(t/tvisc)−3/2 not reproduced in
Brownian dynamics.
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Results

Numerical VACF
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Figure: VACF for a blob with me = mf = ρ∆V .
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Results

Diffusive Dynamics

At long times, the motion of the particle is diffusive with a diffusion
coefficient χ = limt→∞ χ(t) =

∫∞
t=0 C (t)dt, where

χ(t) =
∆q2(t)

2t
=

1

2dt
〈[q(t)− q(0)]2〉.

The dimensionless Schmidt number Sc = ν/χ controls the separation
of time scales between v (r, t) and q(t).

For Sc � 1 the Stokes-Einstein relation predicts

χ =
kBT

6πηRH
, (4)

where for our blob with the 3-point kernel function RH ≈ 0.9∆x .

Self-consistent theory [6] predicts a correction to Stokes-Einstein’s
relation,

χ
(
ν +

χ

2

)
=

kBT

6πρRH
.
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Results

Stokes-Einstein Corrections (preliminary)
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Figure: Corrections to Stokes-Einstein with changing viscosity ν = η/ρ,
me = mf = ρ∆V .
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Results

Passively-Advected (Fluorescent) Tracers
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Outlook

Immersed Rigid Blobs

Unlike a rigid sphere, a blob particle would not perturb a pure shear
flow.

In the far field our blob particle looks like a force monopole
(stokeset), and does not exert a force dipole (stresslet) on the fluid.

Similarly, since here we do not include angular velocity degrees of
freedom, our blob particle does not exert a torque on the fluid
(rotlet).

It is possible to include rotlet and stresslet terms, as done in the force
coupling method [7] and Stokesian Dynamics in the deterministic
setting.

Proper inclusion of inertial terms and fluctuation-dissipation balance
not studied carefully yet...

A. Donev (CIMS) IICM 11/2012 27 / 30



Outlook

Immersed Rigid Bodies

This approach can be extended to immersed rigid bodies (work with
Neelesh Patankar)

ρ (∂tv + v ·∇v) = −∇π −∇ · σ −
∫

Ω
S (q)λ (q) dq + th. drift

me u̇ = F +

∫
Ω
λ (q) dq

Ieω̇ = τ +

∫
Ω

[q× λ (q)] dq

[J (q)] v = u + q× ω for all q ∈ Ω

∇ · v = 0 everywhere.

Here ω is the immersed body angular velocity, τ is the applied torque,
and Ie is the excess moment of inertia of the particle.
The nonlinear advective terms are tricky, though it may not be a
problem at low Reynolds number...
Fluctuation-dissipation balance needs to be studied carefully...
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Outlook

Conclusions

Fluctuations are not just a microscopic phenomenon: giant
fluctuations can reach macroscopic dimensions or certainly dimensions
much larger than molecular.

Fluctuating hydrodynamics seems to be a very good coarse-grained
model for fluids, despite unresolved issues.

Particle inertia can be included in the coupling between blob
particles and a fluctuating incompressible fluid.

Even coarse-grained methods need to be accelerated due to large
separation of time scales between advective and diffusive
phenomena.

One can take the overdamped (Brownian dynamics) limit:
See work by Atzberger et al. [5] for specialized exponential integrators
for β � 1 for me = 0.
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Outlook
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