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Incompressible Inertial Coupling
Fluid-Structure Coupling

o We want to construct a bidirectional coupling between a fluctuating
fluid and a small spherical Brownian particle (blob).

@ Macroscopic coupling between flow and a rigid sphere:

e No-slip boundary condition at the surface of the Brownian particle.
o Force on the bead is the integral of the (fluctuating) stress tensor over
the surface.

@ The above two conditions are questionable at nanoscales, but even
worse, they are very hard to implement numerically in an efficient and
stable manner.

@ We saw already that fluctuations should be taken into account at
the continuum level.
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Incompressible Inertial Coupling
Brownian Particle Model

o Consider a Brownian “particle” of size a with position q(t) and
velocity u = ¢, and the velocity field for the fluid is v(r, t).

@ We do not care about the fine details of the flow around a particle,
which is nothing like a hard sphere with stick boundaries in reality
anyway.

e Take an Immersed Boundary Method (IBM) approach and describe
the fluid-blob interaction using a localized smooth kernel 6,(Ar) with
compact support of size a (integrates to unity).

@ Often presented as an interpolation function for point Lagrangian
particles but here a is a physical size of the particle (as in the Force
Coupling Method (FCM) of Maxey et al [1]).

@ We will call our particles “blobs” since they are not really point
particles.
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Incompressible Inertial Coupling
Local Averaging and Spreading Operators

@ Postulate a no-slip condition between the particle and local fluid
velocities,

a=u=B@lv=[d(@-nv(rd

where the local averaging linear operator J(q) averages the fluid
velocity inside the particle to estimate a local fluid velocity.
@ The induced force density in the fluid because of the particle is:
f=—-Xd:(q—r)=—[S(a)] A,

where the local spreading linear operator S(q) is the reverse (adjoint)
of J(q).

@ The physical volume of the particle AV is related to the shape and
width of the kernel function via

AV =(JS) 1 = [/ 52 (r) dr]l. (1)
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Incompressible Inertial Coupling
Fluid-Structure Direct Coupling

@ The equations of motion in our coupling approach are postulated to
be [2]
p(Ov+v-Vv) = —Vr—V.o—[S(q)] A+ 'thermal' drift
meu = F(q)+ A
st.u = [J(q)]Jvand V-v =0,
where A is the fluid-particle force, F (q) = -V U(q) is the

externally applied force, and m. is the excess mass of the particle.

@ The stress tensor o0 =7 (Vv + VTV) + X includes viscous
(dissipative) and stochastic contributions. The stochastic stress

T = (kg )2 (W+WT)

drives the Brownian motion. Note momentum is conserved.

@ In the existing (stochastic) IBM approach [3] inertial effects are
ignored, me = 0 and thus A = —F.
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Incompressible Inertial Coupling
Effective Inertia

@ Eliminating A we get the particle equation of motion
mi = AV I (V7 + V -0o)+ F + blob correction,

where the effective mass m = m. + my includes the mass of the
"excluded” fluid
me = pAV = p(JS)~L.

o For the fluid we get the effective equation

PeiiOtv = — |p(v- V) + meS U'EJ v—-Vr—-V.o+SF
eff aq

where the effective mass density matrix (operator) is
Pest = p + MePSIP,

where P is the L, projection operator onto the linear subspace
V -v =0, with the appropriate BCs.
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Incompressible Inertial Coupling
Fluctuation-Dissipation Balance

@ One must ensure fluctuation-dissipation balance in the coupled
fluid-particle system.

@ We can eliminate the particle velocity using the no-slip constraint, so
only v and q are independent DOFs.

@ This really means that the stationary (equilibrium) distribution must
be the Gibbs distribution

P(v,q) = Z~" exp[~BH]
where the Hamiltonian (coarse-grained free energy) is

U2 V2
Hiv.a) = U(a) + me'5 + [ o5

:
:u(q)+/"”2eff"dr

@ No entropic contribution to the coarse-grained free energy because
our formulation is isothermal and the particles do not have internal

structure.
A. Donev (CIMS) oY) 6/9/2013 10 / 32



Incompressible Inertial Coupling
contd.

@ A key ingredient of fluctuation-dissipation balance is that that the
fluid-particle coupling is non-dissipative, i.e., in the absence of
viscous dissipation the kinetic energy H is conserved.

e Crucial for energy conservation is that J(q) and S(q) are adjoint,
S =J

(Jv)-u:/v~(Su)dr:/éa(q—r)(v-u)dr. (2)

@ The dynamics is not incompressible in phase space and “thermal
drift” correction terms need to be included [4], but they turn out to
vanish for incompressible flow (gradient of scalar).

@ The spatial discretization should preserve these properties: discrete
fluctuation-dissipation balance (DFDB).
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Numerics
Numerical Scheme

@ Both compressible (explicit) and incompressible schemes have been
implemented by Florencio Balboa (UAM) on GPUs.

@ Spatial discretization is based on previously-developed staggered
schemes for fluctuating hydro [5] and the IBM kernel functions of
Charles Peskin.

@ Temporal discretization follows a second-order splitting algorithm
(move particle + update momenta), and is limited in stability only by
advective CFL.

@ The scheme ensures strict conservation of momentum and (almost
exactly) enforces the no-slip condition at the end of the time step.

@ Continuing work on temporal integrators that ensure the correct
equilibrium distribution and diffusive (Brownian) dynamics.
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Numerics
Spatial Discretization

o IBM kernel functions of Charles Peskin are used to average

d
Jv= Z {li[lqﬁa [da —(rk)a]}v

kegrid

o Discrete spreading operator S = (A V)™t J*

(SF), = (AxAyAz)~ {H ba[qa — a]}

@ The discrete kernel function ¢, gives translational invariance

> dala—r) = land > (q—ri)¢a(a—r) =0,

kegrid kegrid
Z #2(q—ry) = AV™!=const., (3)
kegrid

independent of the position of the (Lagrangian) particle q relative to
the underlying (Eulerian) velocity grid.
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Numerics
Temporal Discretization

@ Predict particle position at midpoint:

At
qn+% — qn 4 7Jnvn'
@ Solve the coupled constrained momentum conservation
. o 1
equations for v**! and u™?! and the Lagrange multipliers 7""2 and

A3 (hard to do efficiently!)

n+l _ ,n 1
P%JFVWH% - _Vv. (pva+a)n+§_sn+%An+%
meu™l = mou” + AtFTI 4 At AT
vyt o= 0
uttl = gyt (Jn+% _ J") v, @
o Correct particle position,
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Numerics
Temporal Integrator (sketch)

@ Predict particle position at midpoint:

qn+% — qn + %Jnvn'
@ Solve unperturbed fluid equation using stochastic Crank-Nicolson
for viscous+-stochastic:

gt —yn

p—x tVE = gv2 (W™ V") + V- X" S"TIFTI 4 ady

vl = o,

where we use the Adams-Bashforth method for the advective
(kinetic) fluxes, and the discretization of the stochastic flux is
described in Ref. [5],

- (45 - o]

where W" is a (symmetrized) collection of i.i.d. unit normal variates.
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Numerics
contd.

@ Solve for inertial velocity perturbation from the particle Av (too
technical to present), and update:

vl = ¢ 4 Av,
If neutrally-buyoant me = 0 this is a non-step, Av = 0.
o Update particle velocity in a momentum conserving manner,

1 ) )
u™t = J7 2y L slip correction.

@ Correct particle position,

qn+1 — qn + %Jn—l—% (vn+1 + vn) ]
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Numerics
Implementation

With periodic boundary conditions all required linear solvers (Poisson,
Helmholtz) can be done using FFTs only.

Florencio Balboa has implemented the algorithm on GPUs using
CUDA in a public-domain code (combines compressible and
incompressible algorithms):

https://code.google.com/p/fluam

Our implicit algorithm is able to take a rather large time step size, as
measured by the advective and viscous CFL numbers:

VAt vAt
where V is a typical advection speed.

Note that for compressible flow there is a sonic CFL number

as = cAt/Ax > «, where c is the speed of sound.

Our scheme should be used with o < 1. The scheme is stable for any
B, but to get the correct thermal dynamics one should use g < 1.
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Results
Equilibrium Radial Correlation Function
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Figure: Equilibrium radial distribution function g» (r) for a suspension of blobs

interacting with a repulsive LJ (WCA) potential.
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Results
Hydrodynamic Interactions
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Results
Velocity Autocorrelation Function

e We investigate the velocity autocorrelation function (VACF) for
the immersed particle

C(t) = (u(to) - u(to + t))

o From equipartition theorem C(0) = (u?) = dkBTT.
@ However, for an incompressible fluid the kinetic energy of the particle
that is less than equipartition,

]

as predicted also for a rigid sphere a long time ago, m¢/m = p//p.

e Hydrodynamic persistence (conservation) gives a long-time
power-law tail C(t) ~ (kT /m)(t/tyisc)~3/? not reproduced in
Brownian dynamics.
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Numerical VACF
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Figure: VACF for a blob with me = mg = pAV.
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Results
Diffusive Dynamics

@ At long times, the motion of the particle is diffusive with a diffusion
coefficient x = lim¢— 00 X(t ft 0o C t)dt, where

x(r>=A‘;t” 22t<[q(t> aO)P).

@ The Stokes-Einstein relation predicts

ke T
X = BT (Einstein) and xsg = (Stokes), (6)

ks T
67['77RH
where for our blob with the 3-point kernel function Ry ~ 0.9Ax.
@ The dimensionless Schmidt number S. = v/xsg controls the
separation of time scales between v (r, t) and q(t).

o Self-consistent theory [6] predicts a correction to Stokes-Einstein’s
relation for small S,

¥ (v+

X) _ kBT
2 67TpRH'
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Results
Stokes-Einstein Corrections
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Figure: Corrections to Stokes-Einstein with changing viscosity v = 1/p,
me = me = pAV.
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Results

Stokes-Einstein Corrections (2D)
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Figure: Corrections to Stokes-Einstein with changing viscosity v = 1/p,
me = me = pAV.
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Outlook

Overdamped Limit (m. = 0)

e [With Eric Vanden-Eijnden] In the overdamped limit, in which
momentum diffuses much faster than the particles, the motion of the
blob at the diffusive time scale can be described by the fluid-free
Stratonovich stochastic differential equation

q=pF+J(q)ov(rt)

where the random advection velocity is a white-in-time process is the
solution of the steady Stokes equation

Vr=uvVN 4 V. (\/QVp*1 kBTW) such that V -v = 0,
and the blob mobility is given by the Stokes solution operator £71,

(q) =—J(a)£7'S(a).
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Outlook

Brownian Dynamics (BD)

e For multi-particle suspensions the mobility matrix M (Q) = {“u}
depends on the positions of all particles Q = {q;}, and the limiting
equation in the Ito formulation is the usual Brownian Dynamics
equation

Q = MF + /2kg T M W+kBT<8dQ M).

@ It is possible to construct temporal |ntegrators for the overdamped
equations, without ever constructing Mz WY (work in progress).

@ The limiting equation when excess inertia is included has not been
derived though it is believed inertia does not enter in the overdamped
equations.
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Qutlook
BD without Green's Functions

The following algorithm can be shown to solve the Brownian Dynamics
SDE:

@ Solve a steady-state Stokes problem (here § < 1)

Grn" = npVA"+V.-X"+SF(q")

T ls (o W) - (o - 2w )| W

Dv" = 0.

@ Predict particle position:
§ = q" + AtV
o Correct particle position,
Q" =q" + % <J"+J"H> v
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Qutlook
Conclusions

@ Fluctuating hydrodynamics seems to be a very good coarse-grained
model for fluids, and can be coupled to immersed particles to model
Brownian suspensions.

@ The minimally-resolved blob approach provides a low-cost but
reasonably-accurate representation of rigid particles in flow.

o Particle inertia can be included in the coupling between blob
particles and a fluctuating incompressible fluid.

@ Stokes-Einstein's relation only holds for large Schmidt numbers.

@ Overdamped limit can be handled just by changing the temporal
integrator.

@ More complex particle shapes can be built out of a collection of
blobs.
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Outlook
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