## Coupling an Incompressible Fluctuating Fluid with Suspended Structures

### Aleksandar Donev

Courant Institute, New York University & Rafael Delgado-Buscalioni, UAM Florencio Balboa Usabiaga, UAM Boyce Griffith, Courant

SIAM Conference on Mathematical Aspects of Materials Science Philadelphia, June 2013







## Levels of Coarse-Graining



Figure: From Pep Español, "Statistical Mechanics of Coarse-Graining"

# Fluid-Structure Coupling

- We want to construct a **bidirectional coupling** between a fluctuating fluid and a small spherical **Brownian particle (blob)**.
- Macroscopic coupling between flow and a rigid sphere:
  - No-slip boundary condition at the surface of the Brownian particle.
  - Force on the bead is the integral of the (fluctuating) stress tensor over the surface.
- The above two conditions are **questionable at nanoscales**, but even worse, they are very hard to implement numerically in an efficient and stable manner.
- We saw already that fluctuations should be taken into account at the continuum level.

## Brownian Particle Model

- Consider a **Brownian "particle"** of size *a* with position  $\mathbf{q}(t)$  and velocity  $\mathbf{u} = \dot{\mathbf{q}}$ , and the velocity field for the fluid is  $\mathbf{v}(\mathbf{r}, t)$ .
- We do not care about the fine details of the flow around a particle, which is nothing like a hard sphere with stick boundaries in reality anyway.
- Take an **Immersed Boundary Method** (IBM) approach and describe the fluid-blob interaction using a localized smooth **kernel**  $\delta_a(\Delta \mathbf{r})$  with compact support of size *a* (integrates to unity).
- Often presented as an interpolation function for point Lagrangian particles but here *a* is a **physical size** of the particle (as in the **Force Coupling Method** (FCM) of Maxey *et al* [1]).
- We will call our particles "**blobs**" since they are not really point particles.

Incompressible Inertial Coupling

## Local Averaging and Spreading Operators

• Postulate a **no-slip condition** between the particle and local fluid velocities,

$$\dot{\mathbf{q}} = \mathbf{u} = [\mathbf{J}(\mathbf{q})]\mathbf{v} = \int \delta_a (\mathbf{q} - \mathbf{r}) \mathbf{v}(\mathbf{r}, t) d\mathbf{r},$$

where the *local averaging* linear operator J(q) averages the fluid velocity inside the particle to estimate a local fluid velocity.

• The induced force density in the fluid because of the particle is:

$$\mathbf{f} = -\boldsymbol{\lambda}\delta_{a}\left(\mathbf{q} - \mathbf{r}\right) = -\left[\mathbf{S}\left(\mathbf{q}\right)\right]\boldsymbol{\lambda},$$

where the *local spreading* linear operator S(q) is the reverse (adjoint) of J(q).

 The physical volume of the particle ΔV is related to the shape and width of the kernel function via

$$\Delta V = (\mathbf{JS})^{-1} = \left[ \int \delta_a^2(\mathbf{r}) \, d\mathbf{r} \right]^{-1}.$$
 (1)

## Fluid-Structure Direct Coupling

 The equations of motion in our coupling approach are **postulated** to be [2]

$$\begin{split} \rho \left( \partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} \right) &= -\nabla \pi - \nabla \cdot \boldsymbol{\sigma} - \left[ \mathbf{S} \left( \mathbf{q} \right) \right] \boldsymbol{\lambda} + \text{'thermal' drift} \\ m_e \dot{\mathbf{u}} &= \mathbf{F} \left( \mathbf{q} \right) + \boldsymbol{\lambda} \\ \text{s.t. } \mathbf{u} &= \left[ \mathbf{J} \left( \mathbf{q} \right) \right] \mathbf{v} \text{ and } \nabla \cdot \mathbf{v} = \mathbf{0}, \end{split}$$

where  $\lambda$  is the fluid-particle force,  $F(q) = -\nabla U(q)$  is the externally applied force, and  $m_e$  is the excess mass of the particle.

• The stress tensor  $\boldsymbol{\sigma} = \eta \left( \boldsymbol{\nabla} \mathbf{v} + \boldsymbol{\nabla}^T \mathbf{v} \right) + \boldsymbol{\Sigma}$  includes viscous (dissipative) and stochastic contributions. The stochastic stress

$$\boldsymbol{\Sigma} = \left(k_B T \eta\right)^{1/2} \left(\boldsymbol{\mathcal{W}} + \boldsymbol{\mathcal{W}}^T\right)$$

drives the Brownian motion. Note momentum is conserved.

In the existing (stochastic) IBM approach [3] inertial effects are ignored, m<sub>e</sub> = 0 and thus λ = -F.

## Effective Inertia

• Eliminating  $oldsymbol{\lambda}$  we get the particle equation of motion

 $m\dot{\mathbf{u}} = \Delta V \mathbf{J} (\mathbf{\nabla} \pi + \mathbf{\nabla} \cdot \boldsymbol{\sigma}) + \mathbf{F} + \text{blob correction},$ 

where the **effective mass**  $m = m_e + m_f$  includes the mass of the "excluded" fluid

$$m_f = \rho \Delta V = \rho \left( \mathbf{JS} \right)^{-1}$$

• For the fluid we get the effective equation

$$\boldsymbol{\rho}_{\text{eff}}\partial_t \mathbf{v} = -\left[\rho\left(\mathbf{v}\cdot\boldsymbol{\nabla}\right) + m_e \mathbf{S}\left(\mathbf{u}\cdot\frac{\partial}{\partial \mathbf{q}}\mathbf{J}\right)\right]\mathbf{v} - \boldsymbol{\nabla}\pi - \boldsymbol{\nabla}\cdot\boldsymbol{\sigma} + \mathbf{SF}$$

where the effective mass density matrix (operator) is

$$\rho_{\text{eff}} = \rho + m_e \mathcal{P} S J \mathcal{P},$$

where  $\mathcal{P}$  is the  $L_2$  projection operator onto the linear subspace  $\nabla \cdot \mathbf{v} = 0$ , with the appropriate BCs.

## Fluctuation-Dissipation Balance

- One must ensure **fluctuation-dissipation balance** in the coupled fluid-particle system.
- We can eliminate the particle velocity using the no-slip constraint, so only **v** and **q** are independent DOFs.
- This really means that the **stationary** (equilibrium) distribution must be the **Gibbs distribution**

$$P(\mathbf{v},\mathbf{q}) = Z^{-1} \exp\left[-\beta H\right]$$

where the Hamiltonian (coarse-grained free energy) is

$$egin{aligned} \mathcal{H}\left(\mathbf{v},\mathbf{q}
ight) &= U\left(\mathbf{q}
ight) + m_{e}rac{u^{2}}{2} + \int 
horac{\mathbf{v}^{2}}{2}\,d\mathbf{r}, \ &= U\left(\mathbf{q}
ight) + \int rac{\mathbf{v}^{T} oldsymbol{
ho}_{ ext{eff}} \mathbf{v}}{2}\,d\mathbf{r} \end{aligned}$$

• No entropic contribution to the coarse-grained free energy because our formulation is isothermal and the particles do not have internal structure.

### contd.

- A key ingredient of fluctuation-dissipation balance is that the fluid-particle **coupling is non-dissipative**, i.e., in the absence of viscous dissipation the kinetic energy *H* is conserved.
- $\bullet\,$  Crucial for energy conservation is that J(q) and S(q) are adjoint,  $S=J^{\star},$

$$(\mathbf{J}\mathbf{v})\cdot\mathbf{u} = \int \mathbf{v}\cdot(\mathbf{S}\mathbf{u})\,d\mathbf{r} = \int \delta_{\mathbf{a}}\,(\mathbf{q}-\mathbf{r})\,(\mathbf{v}\cdot\mathbf{u})\,d\mathbf{r}.$$
 (2)

- The dynamics is **not incompressible in phase space** and "**thermal drift**" correction terms need to be included [4], but they turn out to **vanish** for incompressible flow (gradient of scalar).
- The spatial discretization should preserve these properties: **discrete fluctuation-dissipation balance (DFDB)**.

### Numerical Scheme

- Both compressible (explicit) and incompressible schemes have been implemented by Florencio Balboa (UAM) on GPUs.
- Spatial discretization is based on previously-developed **staggered schemes** for fluctuating hydro [5] and the **IBM kernel functions** of Charles Peskin.
- Temporal discretization follows a second-order **splitting algorithm** (move particle + update momenta), and is limited in **stability** only by **advective CFL**.
- The scheme ensures **strict conservation** of momentum and (almost exactly) enforces the no-slip condition at the end of the time step.
- Continuing work on temporal integrators that ensure the correct equilibrium distribution and diffusive (Brownian) dynamics.

## Spatial Discretization

• IBM kernel functions of Charles Peskin are used to average

$${f J}{f v}\equiv\sum_{f k\in {
m grid}}\left\{\prod_{lpha=1}^d \phi_{f a}[q_lpha-(r_k)_lpha]
ight\}{f v}_k.$$

• Discrete spreading operator  $\mathbf{S} = \left(\Delta V_f\right)^{-1} \mathbf{J}^{\star}$ 

$$(\mathbf{SF})_{k} = (\Delta x \Delta y \Delta z)^{-1} \left\{ \prod_{\alpha=1}^{d} \phi_{\mathbf{a}} [q_{\alpha} - (r_{k})_{\alpha}] \right\} \mathbf{F}.$$

• The discrete kernel function  $\phi_a$  gives translational invariance

$$\sum_{\mathbf{k}\in\mathsf{grid}}\phi_{a}(\mathbf{q}-\mathbf{r}_{k}) = 1 \text{ and } \sum_{\mathbf{k}\in\mathsf{grid}}(\mathbf{q}-\mathbf{r}_{k})\phi_{a}(\mathbf{q}-\mathbf{r}_{k}) = 0,$$
$$\sum_{\mathbf{k}\in\mathsf{grid}}\phi_{a}^{2}(\mathbf{q}-\mathbf{r}_{k}) = \Delta V^{-1} = \mathsf{const.}, \tag{3}$$

independent of the position of the (Lagrangian) particle  ${\bf q}$  relative to the underlying (Eulerian) velocity grid.

A. Donev (CIMS)

### **Temporal Discretization**

• Predict particle position at midpoint:

$$\mathbf{q}^{n+rac{1}{2}} = \mathbf{q}^n + rac{\Delta t}{2} \mathbf{J}^n \mathbf{v}^n.$$

 Solve the coupled constrained momentum conservation equations for v<sup>n+1</sup> and u<sup>n+1</sup> and the Lagrange multipliers π<sup>n+<sup>1</sup>/<sub>2</sub></sup> and λ<sup>n+<sup>1</sup>/<sub>2</sub></sup> (hard to do efficiently!)

$$\rho \frac{\mathbf{v}^{n+1} - \mathbf{v}^{n}}{\Delta t} + \nabla \pi^{n+\frac{1}{2}} = -\nabla \cdot \left(\rho \mathbf{v} \mathbf{v}^{T} + \sigma\right)^{n+\frac{1}{2}} - \mathbf{S}^{n+\frac{1}{2}} \lambda^{n+\frac{1}{2}}$$
$$m_{e} \mathbf{u}^{n+1} = m_{e} \mathbf{u}^{n} + \Delta t \, \mathbf{F}^{n+\frac{1}{2}} + \Delta t \, \lambda^{n+\frac{1}{2}}$$
$$\nabla \cdot \mathbf{v}^{n+1} = 0$$
$$\mathbf{u}^{n+1} = \mathbf{J}^{n+\frac{1}{2}} \mathbf{v}^{n+1} + \left(\mathbf{J}^{n+\frac{1}{2}} - \mathbf{J}^{n}\right) \mathbf{v}^{n}, \qquad (4)$$

• Correct particle position,

$$\mathbf{q}^{n+1} = \mathbf{q}^n + \frac{\Delta t}{2} \mathbf{J}^{n+\frac{1}{2}} \left( \mathbf{v}^{n+1} + \mathbf{v}^n \right).$$

## Temporal Integrator (sketch)

• Predict particle position at midpoint:

$$\mathbf{q}^{n+rac{1}{2}} = \mathbf{q}^n + rac{\Delta t}{2} \mathbf{J}^n \mathbf{v}^n.$$

• Solve unperturbed fluid equation using **stochastic Crank-Nicolson** for viscous+stochastic:

Numerics

$$\rho \frac{\tilde{\mathbf{v}}^{n+1} - \mathbf{v}^n}{\Delta t} + \nabla \tilde{\pi} = \frac{\eta}{2} \nabla^2 \left( \tilde{\mathbf{v}}^{n+1} + \mathbf{v}^n \right) + \nabla \cdot \mathbf{\Sigma}^n + \mathbf{S}^{n+\frac{1}{2}} \mathbf{F}^{n+\frac{1}{2}} + \operatorname{adv} \mathbf{\nabla} \cdot \tilde{\mathbf{v}}^{n+1} = 0,$$

where we use the **Adams-Bashforth method** for the advective (kinetic) fluxes, and the discretization of the stochastic flux is described in Ref. [5],

$$\boldsymbol{\Sigma}^{n} = \left(\frac{k_{B}T\eta}{\Delta V \Delta t}\right)^{1/2} \left[ (\boldsymbol{\mathsf{W}}^{n}) + (\boldsymbol{\mathsf{W}}^{n})^{T} \right],$$

where  $\mathbf{W}^n$  is a (symmetrized) collection of i.i.d. unit normal variates.

### contd.

Solve for inertial velocity perturbation from the particle Δv (too technical to present), and update:

$$\mathbf{v}^{n+1} = \tilde{\mathbf{v}}^{n+1} + \Delta \mathbf{v}.$$

If neutrally-buyoant  $m_e = 0$  this is a non-step,  $\Delta \mathbf{v} = \mathbf{0}$ .

• Update particle velocity in a momentum conserving manner,

$$\mathbf{u}^{n+1} = \mathbf{J}^{n+\frac{1}{2}}\mathbf{v}^{n+1} + \text{slip correction.}$$

• Correct particle position,

$$\mathbf{q}^{n+1} = \mathbf{q}^n + rac{\Delta t}{2} \mathbf{J}^{n+rac{1}{2}} \left( \mathbf{v}^{n+1} + \mathbf{v}^n 
ight).$$

### Implementation

- With periodic boundary conditions all required linear solvers (Poisson, Helmholtz) can be done using FFTs only.
- Florencio Balboa has implemented the algorithm on GPUs using CUDA in a public-domain code (combines compressible and incompressible algorithms): https://code.google.com/p/fluam
- Our implicit algorithm is able to take a rather large time step size, as measured by the **advective** and **viscous CFL numbers**:

$$\alpha = \frac{V\Delta t}{\Delta x}, \quad \beta = \frac{\nu\Delta t}{\Delta x^2}, \tag{5}$$

where V is a typical advection speed.

- Note that for compressible flow there is a sonic CFL number  $\alpha_s = c\Delta t / \Delta x \gg \alpha$ , where c is the speed of sound.
- Our scheme should be used with  $\alpha \lesssim 1$ . The scheme is stable for any  $\beta$ , but to get the correct thermal dynamics one should use  $\beta \lesssim 1$ .

### Equilibrium Radial Correlation Function



Figure: Equilibrium radial distribution function  $g_2(\mathbf{r})$  for a suspension of blobs interacting with a repulsive LJ (WCA) potential.

| •  | <b>D</b> | (a)    | 10   |
|----|----------|--------|------|
| Α. | Doney (  | I C.II | VIS. |
|    | 201101   |        |      |

IICM

### Hydrodynamic Interactions



Figure: Effective hydrodynamic force between two approaching blobs at small Reynolds numbers,  $\frac{F}{F_{St}} = -\frac{2F_0}{6\pi\eta R_H v_r}$ .

A. Donev (CIMS)

## Velocity Autocorrelation Function

• We investigate the **velocity autocorrelation function** (VACF) for the immersed particle

$$C(t) = \langle \mathbf{u}(t_0) \cdot \mathbf{u}(t_0+t) \rangle$$

- From equipartition theorem  $C(0) = \langle u^2 \rangle = d \frac{k_B T}{m}$ .
- However, for an incompressible fluid the kinetic energy of the particle that is **less than equipartition**,

$$\langle u^2 
angle = \left[ 1 + rac{m_f}{(d-1)m} 
ight]^{-1} \left( d rac{k_B T}{m} 
ight),$$

as predicted also for a rigid sphere a long time ago,  $m_f/m = \rho'/\rho$ .

• Hydrodynamic persistence (conservation) gives a **long-time power-law tail**  $C(t) \sim (kT/m)(t/t_{visc})^{-3/2}$  not reproduced in Brownian dynamics.

## Numerical VACF



Figure: VACF for a blob with  $m_e = m_f = \rho \Delta V$ .

## **Diffusive Dynamics**

• At long times, the motion of the particle is diffusive with a diffusion coefficient  $\chi = \lim_{t\to\infty} \chi(t) = \int_{t=0}^{\infty} C(t) dt$ , where

$$\chi(t) = rac{\Delta q^2(t)}{2t} = rac{1}{2dt} \langle [\mathbf{q}(t) - \mathbf{q}(0)]^2 
angle.$$

The Stokes-Einstein relation predicts

$$\chi = \frac{k_B T}{\mu}$$
 (Einstein) and  $\chi_{SE} = \frac{k_B T}{6\pi\eta R_H}$  (Stokes), (6)

where for our blob with the 3-point kernel function  $R_H \approx 0.9\Delta x$ .

- The dimensionless Schmidt number  $S_c = \nu/\chi_{SE}$  controls the separation of time scales between **v** (**r**, *t*) and **q**(*t*).
- Self-consistent theory [6] predicts a correction to Stokes-Einstein's relation for small  $S_c$ ,

$$\chi\left(\nu+\frac{\chi}{2}\right)=\frac{k_BT}{6\pi\rho R_H}.$$

### Stokes-Einstein Corrections



Figure: Corrections to Stokes-Einstein with changing viscosity  $\nu = \eta/\rho$ ,  $m_e = m_f = \rho \Delta V$ .

A. Donev (CIMS)

## Stokes-Einstein Corrections (2D)



Figure: Corrections to Stokes-Einstein with changing viscosity  $\nu = \eta/\rho$ ,  $m_e = m_f = \rho \Delta V$ .

A. Donev (CIMS)

#### Outlook

## Overdamped Limit $(m_e = 0)$

• [With Eric Vanden-Eijnden] In the **overdamped limit**, in which momentum diffuses much faster than the particles, the motion of the blob at the diffusive time scale can be described by the fluid-free **Stratonovich** stochastic differential equation

$$\dot{\mathsf{q}}=\mu\mathsf{F}+\mathsf{J}\left(\mathsf{q}
ight)\circ\mathsf{v}\left(\mathsf{r},t
ight)$$

where the random advection velocity is a **white-in-time** process is the solution of the **steady Stokes equation** 

$$abla \pi = 
u oldsymbol{
abla}^2 oldsymbol{v} + oldsymbol{
abla} \cdot \left( \sqrt{2 
u 
ho^{-1} k_B T} oldsymbol{\mathcal{W}} 
ight)$$
 such that  $oldsymbol{
abla} \cdot oldsymbol{v} = 0$ ,

and the blob **mobility** is given by the Stokes solution operator  $\mathcal{L}^{-1}$ ,

$$\mu\left(\mathsf{q}
ight)=-\mathsf{J}\left(\mathsf{q}
ight)\mathcal{L}^{-1}\mathsf{S}\left(\mathsf{q}
ight).$$

## Brownian Dynamics (BD)

• For multi-particle suspensions the mobility matrix  $\mathbf{M}(\mathbf{Q}) = \{\boldsymbol{\mu}_{ij}\}\$ depends on the positions of all particles  $\mathbf{Q} = \{\mathbf{q}_i\}$ , and the limiting equation in the **Ito** formulation is the usual **Brownian Dynamics** equation

$$\dot{\mathbf{Q}} = \mathbf{MF} + \sqrt{2k_BT} \,\mathbf{M}^{\frac{1}{2}} \widetilde{\mathcal{W}} + k_BT \left(\frac{\partial}{\partial \mathbf{Q}} \cdot \mathbf{M}\right)$$

- It is possible to construct temporal integrators for the overdamped equations, without ever constructing  $M^{\frac{1}{2}}\widetilde{\mathcal{W}}$  (work in progress).
- The limiting equation when excess **inertia** is included has not been derived though it is believed inertia does not enter in the overdamped equations.

#### Outlook

### BD without Green's Functions

The following algorithm can be shown to solve the Brownian Dynamics SDE:

• Solve a steady-state Stokes problem (here  $\delta \ll 1$ )

$$\begin{aligned} \mathbf{G}\boldsymbol{\pi}^{n} &= \eta \boldsymbol{\nabla}^{2} \mathbf{v}^{n} + \boldsymbol{\nabla} \cdot \boldsymbol{\Sigma}^{n} + \mathbf{S}^{n} \mathbf{F} \left( \mathbf{q}^{n} \right) \\ &+ \frac{k_{B} T}{\delta} \left[ \mathbf{S} \left( \mathbf{q}^{n} + \frac{\delta}{2} \widetilde{\mathbf{W}}^{n} \right) - \mathbf{S} \left( \mathbf{q}^{n} - \frac{\delta}{2} \widetilde{\mathbf{W}}^{n} \right) \right] \widetilde{\mathbf{W}}^{n} \\ \mathbf{D} \mathbf{v}^{n} &= 0. \end{aligned}$$

• **Predict** particle position:

$$\tilde{\mathbf{q}}^{n+1} = \mathbf{q}^n + \Delta t \mathbf{J}^n \mathbf{v}^n.$$

• Correct particle position,

$$\mathbf{q}^{n+1} = \mathbf{q}^n + \frac{\Delta t}{2} \left( \mathbf{J}^n + \tilde{\mathbf{J}}^{n+1} \right) \mathbf{v}^n.$$

- Fluctuating hydrodynamics seems to be a very good coarse-grained model for fluids, and can be coupled to immersed particles to model Brownian suspensions.
- The **minimally-resolved blob approach** provides a low-cost but reasonably-accurate representation of rigid particles in flow.
- **Particle inertia** can be included in the coupling between blob particles and a fluctuating **incompressible** fluid.
- Stokes-Einstein's relation only holds for large Schmidt numbers.
- **Overdamped limit** can be handled just by changing the temporal integrator.
- More complex particle shapes can be built out of a collection of blobs.

#### Outlook

### References



S. Lomholt and M.R. Maxey.

Force-coupling method for particulate two-phase flow: Stokes flow. J. Comp. Phys., 184(2):381–405, 2003.



F. Balboa Usabiaga, R. Delgado-Buscalioni, B. E. Griffith, and A. Donev. Inertial Coupling Method for particles in an incompressible fluctuating fluid. Submitted, code available at https://code.google.com/p/fluam, 2013.



A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales. J. Comp. Phys., 224:1255–1292, 2007.



P. J. Atzberger.

Stochastic Eulerian-Lagrangian Methods for Fluid-Structure Interactions with Thermal Fluctuations. J. Comp. Phys., 230:2821–2837, 2011.



F. Balboa Usabiaga, J. B. Bell, R. Delgado-Buscalioni, A. Donev, T. G. Fai, B. E. Griffith, and C. S. Peskin. Staggered Schemes for Incompressible Fluctuating Hydrodynamics. *SIAM J. Multiscale Modeling and Simulation*, 10(4):1369–1408, 2012.

A. Donev, A. L. Garcia, Anton de la Fuente, and J. B. Bell.
 Enhancement of Diffusive Transport by Nonequilibrium Thermal Fluctuations.
 J. of Statistical Mechanics: Theory and Experiment, 2011:P06014, 2011.