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Introduction

Micro- and nano-hydrodynamics

Flows of fluids (gases and liquids) through micro- (µm) and
nano-scale (nm) structures has become technologically important,
e.g., micro-fluidics, microelectromechanical systems (MEMS).

Biologically-relevant flows also occur at micro- and nano- scales.

An important feature of small-scale flows, not discussed here, is
surface/boundary effects (e.g., slip in the contact line problem).

Essential distinguishing feature from “ordinary” CFD: thermal
fluctuations!

I focus here not on the technical details of hybrid methods, but
rather, on using our method to demonstrate the general conclusion
that fluctuations should be taken into account at the continuum
level.
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Introduction

Example: DNA Filtering

Fu et al., Nature
Nanotechnology 2 (2007) H. Craighead, Nature 442 (2006)

How to coarse grain the fluid (solvent) and couple it to the
suspended microstructure (e.g., polymer chain)?
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Introduction

Levels of Coarse-Graining

Figure: From Pep Español, “Statistical Mechanics of Coarse-Graining”
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Introduction

This talk: Particle/Continuum Hybrid

Figure: Hybrid method for a polymer chain.
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Particle Methods

Particle Methods for Complex Fluids

The most direct and accurate way to simulate the interaction between
the solvent (fluid) and solute (beads, chain) is to use a particle
scheme for both: Molecular Dynamics (MD)

mr̈i =
∑

j

f ij (rij )

The stiff repulsion among beads demands small time steps, and
chain-chain crossings are a problem.

Most of the computation is “wasted” on the unimportant solvent
particles!

Over longer times it is hydrodynamics (local momentum and energy
conservation) and fluctuations (Brownian motion) that matter.

We need to coarse grain the fluid model further: Replace
deterministic interactions with stochastic collisions.
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Particle Methods

Direct Simulation Monte Carlo (DSMC)

(MNG)

Tethered polymer chain in
shear flow.

Stochastic conservative collisions of
randomly chosen nearby solvent
particles, as in DSMC (also related to
MPCD/SRD and DPD).

Solute particles still interact with both
solvent and other solute particles as
hard or soft spheres.

No fluid structure: Viscous ideal gas.

One can introduce biased collision
models to give the fluids consisten
structure and a non-ideal equation
of state. [1].
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Fluctuating Hydrodynamics

Continuum Models of Fluid Dynamics

Formally, we consider the continuum field of conserved quantities

U(r, t) =

 ρ
j
e

 ∼= Ũ(r, t) =
∑

i

 mi

miυi

miυ
2
i /2

 δ [r − ri (t)] ,

where the symbol ∼= means that U(r, t) approximates the true
atomistic configuration Ũ(r, t) over long length and time scales.

Formal coarse-graining of the microscopic dynamics has been
performed to derive an approximate closure for the macroscopic
dynamics [2].

This leads to SPDEs of Langevin type formed by postulating a
white-noise random flux term in the usual Navier-Stokes-Fourier
equations with magnitude determined from the
fluctuation-dissipation balance condition, following Landau and
Lifshitz.
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Fluctuating Hydrodynamics

Compressible Fluctuating Hydrodynamics

Dtρ =− ρ∇ · v
ρ (Dtv) =−∇P + ∇ ·

(
η∇v + Σ

)
ρcp (DtT ) =DtP + ∇ · (µ∇T + Ξ) +

(
η∇v + Σ

)
: ∇v,

where the variables are the density ρ, velocity v, and temperature T
fields,

Dt� = ∂t� + v ·∇ (�)

∇v = (∇v + ∇vT )− 2 (∇ · v) I/3

and capital Greek letters denote stochastic fluxes:

Σ =
√

2ηkBT W .

〈Wij (r, t)W?
kl (r′, t ′)〉 = (δikδjl + δilδjk − 2δijδkl/3) δ(t − t ′)δ(r − r′).

A. Donev (CIMS) Hybrid 7/2011 13 / 40



Fluctuating Hydrodynamics

Landau-Lifshitz Navier-Stokes (LLNS) Equations

The non-linear LLNS equations are ill-behaved stochastic PDEs,
and we do not really know how to interpret the nonlinearities precisely.

Finite-volume discretizations naturally impose a grid-scale
regularization (smoothing) of the stochastic forcing.

A renormalization of the transport coefficients is also necessary [3].

We have algorithms and codes to solve the compressible equations
(collocated and staggered grid), and recently also the incompressible
ones (staggered grid) [4, 5].

Solving the LLNS equations numerically requires paying attention to
discrete fluctuation-dissipation balance, in addition to the usual
deterministic difficulties [4].
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Fluctuating Hydrodynamics

Finite-Volume Schemes

ct = −v ·∇c + χ∇2c + ∇ ·
(√

2χW
)

= ∇ ·
[
−cv + χ∇c +

√
2χW

]
Generic finite-volume spatial discretization

ct = D
[
(−Vc + Gc) +

√
2χ/ (∆t∆V )W

]
,

where D : faces→ cells is a conservative discrete divergence,
G : cells→ faces is a discrete gradient.

Here W is a collection of random normal numbers representing the
(face-centered) stochastic fluxes.

The divergence and gradient should be duals, D? = −G.

Advection should be skew-adjoint (non-dissipative) if ∇ · v = 0,

(DV)? = − (DV) if (DV) 1 = 0.
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Fluctuating Hydrodynamics

Weak Accuracy

Figure: Equilibrium discrete spectra (static structure factors) Sρ,ρ(k) ∼ 〈ρ̂ρ̂?〉
(should be unity for all discrete wavenumbers) and Sρ,v(k) ∼ 〈ρ̂v̂?x 〉 (should be
zero) for our RK3 collocated scheme.
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Hybrid Particle-Continuum Method

Fluid-Structure Coupling using Particles

MNG

Split the domain into a particle and a
continuum (hydro) subdomains,
with timesteps ∆tH = K∆tP .

Hydro solver is a simple explicit
(fluctuating) compressible LLNS
code and is not aware of particle
patch.

The method is based on Adaptive
Mesh and Algorithm Refinement
(AMAR) methodology for conservation
laws and ensures strict conservation
of mass, momentum, and energy.
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Hybrid Particle-Continuum Method

Continuum-Particle Coupling

Each macro (hydro) cell is either particle or continuum. There is
also a reservoir region surrounding the particle subdomain.

The coupling is roughly of the state-flux form:

The continuum solver provides state boundary conditions for the
particle subdomain via reservoir particles.
The particle subdomain provides flux boundary conditions for the
continuum subdomain.

The fluctuating hydro solver is oblivious to the particle region: Any
conservative explicit finite-volume scheme can trivially be substituted.

The coupling is greatly simplified because the ideal particle fluid has
no internal structure.

”A hybrid particle-continuum method for hydrodynamics of complex fluids”, A.
Donev and J. B. Bell and A. L. Garcia and B. J. Alder, SIAM J. Multiscale
Modeling and Simulation 8(3):871-911, 2010
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Hybrid Particle-Continuum Method

Our Hybrid Algorithm

1 The hydro solution uH is computed everywhere, including the particle
patch, giving an estimated total flux ΦH .

2 Reservoir particles are inserted at the boundary of the particle patch
based on Chapman-Enskog distribution from kinetic theory,
accounting for both collisional and kinetic viscosities.

3 Reservoir particles are propagated by ∆t and collisions are processed,
giving the total particle flux Φp.

4 The hydro solution is overwritten in the particle patch based on the
particle state up.

5 The hydro solution is corrected based on the more accurate flux,
uH ← uH −ΦH + Φp.
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Hybrid Particle-Continuum Method

Other Hybrid Algorithms

For molecular dynamics (non-ideal particle fluids) the insertion of
reservoir particles is greatly complicated by the need to account for
the internal structure of the fluid and requires an overlap region.

A hybrid method based on a flux-flux coupling between molecular
dynamics and isothermal compressible fluctuating hydrodynamics has
been developed by Coveney, De Fabritiis, Delgado-Buscalioni and
co-workers [6].

Some comparisons between different forms of coupling (state-state,
state-flux, flux-state, flux-flux) has been performed by Ren [7].

Reaching relevant time scales ultimately requires a stochastic
immersed structure approach coupling immersed structures directly
to a fluctuating solver (work in progresss).
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The Importance of Thermal Fluctuations Brownian Bead

Brownian Bead

Themal fluctuations push a sphere of size a and density ρ′ suspended
in a stationary fluid with density ρ and viscosity η (Brownian walker)
with initial velocity Vth ≈

√
kT/M, M ≈ ρ′a3.

The classical picture of Brownian motion indicates three
widely-separated timescales:

Sound waves are generated from the sudden compression of the fluid
and they take away a fraction of the kinetic energy during a sonic time
tsonic ≈ a/c, where c is the (adiabatic) sound speed.
Viscous dissipation then takes over and slows the particle
non-exponentially over a viscous time tvisc ≈ ρa2/η, where η is the
shear viscosity.
Thermal fluctuations get similarly dissipated, but their constant
presence pushes the particle diffusively over a diffusion time
tdiff ≈ a2/D, where D ∼ kT/(aη).
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The Importance of Thermal Fluctuations Brownian Bead

Velocity Autocorrelation Function

We investigate the velocity autocorrelation function (VACF) for a
Brownian bead

C (t) = 2d−1 〈v(t0) · v(t0 + t)〉

From equipartition theorem C (0) = kBT/M.

For a neutrally-boyant particle, ρ′ = ρ, incompressible hydrodynamic
theory gives C (0) = 2kBT/3M because one third of the kinetic
energy decays at the sound time scale.

Hydrodynamic persistence (conservation) gives a long-time
power-law tail C (t) ∼ (kBT/M)(t/tvisc)−3/2 that can be quantified
using fluctuating hydrodynamics.

The diffusion coefficient is the integral of the VACF and is
strongly-affected by the tail.
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The Importance of Thermal Fluctuations Brownian Bead

VACF
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The Importance of Thermal Fluctuations Adiabatic Piston

The adiabatic piston problem

MNG
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The Importance of Thermal Fluctuations Adiabatic Piston

Relaxation Toward Equilibrium
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Figure: Massive rigid piston (M/m = 4000) not in mechanical equilibrium: The
deterministic hybrid gives the wrong answer!
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The Importance of Thermal Fluctuations Adiabatic Piston

VACF for Piston
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Figure: The VACF for a rigid piston of mas M/m = 1000 at thermal equilibrium:
Increasing the width of the particle region does not help: One must
include the thermal fluctuations in the continuum solver!
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Fluctuation-Enhanced Diffusion

Nonequilibrium Fluctuations

When macroscopic gradients are present, steady-state thermal
fluctuations become long-range correlated.

Consider a binary mixture of fluids and consider concentration
fluctuations around a steady state c0(r):

c(r, t) = c0(r) + δc(r, t)

The concentration fluctuations are advected by the random
velocities v(r, t) = δv(r, t), approximately:

∂t (δc) + (δv) ·∇c0 = χ∇2 (δc) +
√

2χkBT (∇ ·Wc)

The velocity fluctuations drive and amplify the concentration
fluctuations leading to so-called giant fluctuations [8].
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Fluctuation-Enhanced Diffusion

Fractal Fronts in Diffusive Mixing

Figure: Snapshots of concentration in a miscible mixture showing the development
of a rough diffusive interface between two miscible fluids in zero gravity [3, 8, 5].
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Fluctuation-Enhanced Diffusion

Giant Fluctuations in Experiments

Figure: Experimental results by A. Vailati et al. from a microgravity environment
[8] showing the enhancement of concentration fluctuations in space (box scale is
macroscopic: 5mm on the side, 1mm thick).
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Fluctuation-Enhanced Diffusion

Fluctuation-Enhanced Diffusion Coefficient

The nonlinear concentration equation includes a contribution to the
mass flux due to advection by the fluctuating velocities,

∂t (δc) + (δv) ·∇c0 = ∇ · [− (δc) (δv) + χ∇ (δc)] + . . .

Simple (quasi-linear) perturbative theory suggests that concentration
and velocity fluctuations become correlated and

−〈(δc) (δv)〉 ≈ (∆χ)∇c0.

The fluctuation-renormalized diffusion coefficient is χ+ ∆χ
(think of eddy diffusivity in turbulent transport).

Because fluctuations are affected by boundaries, ∆χ is system-size
dependent.
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Fluctuation-Enhanced Diffusion

Fluctuation-Enhanced Diffusion Coefficient

Consider the effective diffusion coefficient in a system of dimensions
Lx × Ly × Lz with a concentration gradient imposed along the y axis.

In two dimensions, Lz � Lx � Ly , linearized fluctuating
hydrodynamics predicts a logarithmic divergence

χ
(2D)
eff ≈ χ+

kBT

4πρ(χ+ ν)Lz
ln

Lx

L0

In three dimensions, Lx = Lz = L� Ly , χeff converges as L→∞
to the macroscopic diffusion coefficient,

χ
(3D)
eff ≈ χ+

α kBT

ρ(χ+ ν)

(
1

L0
− 1

L

)
We have verified these predictions using particle (DSMC) simulations
at hydrodynamic scales [3].
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Fluctuation-Enhanced Diffusion

Particle Simulations
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Figure: Divergence of diffusion coefficient in two dimensions.
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Fluctuation-Enhanced Diffusion

Microscopic, Mesoscopic and Macroscopic Fluid Dynamics

Instead of an ill-defined “molecular” or “bare” diffusivity, one should
define a locally renormalized diffusion coefficient χ0 that depends
on the length-scale of observation.

This coefficient accounts for the arbitrary division between continuum
and particle levels inherent to fluctuating hydrodynamics.

A deterministic continuum limit does not exist in two dimensions, and
is not applicable to small-scale finite systems in three dimensions.

Fluctuating hydrodynamics is applicable at a broad range of scales
if the transport coefficient are renormalized based on the cutoff scale
for the random forcing terms.
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Conclusions

Conclusions

Coarse-grained particle methods can be used to accelerate
hydrodynamic calculations at small scales.

Hybrid particle continuum methods closely reproduce purely
particle simulations at a fraction of the cost.

It is necessary to include fluctuations in the continuum solver in
hybrid methods.

Thermal fluctuations affect the macroscopic transport in fluids.
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Conclusions

Future Directions

Improve and implement stochastic particle methods (parallelize, add
chemistry, analyze theoretically).

Direct fluid-structure coupling between fluctuating hydrodynamics
and microstructure.

Develop numerical schemes for Low-Mach Number fluctuating
hydrodynamics.

Ultimately we require an Adaptive Mesh and Algorithm
Refinement (AMAR) framework that couples a particle model
(micro), with compressible fluctuating Navier-Stokes (meso), and
incompressible or low Mach solver (macro).
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Conclusions
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