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Introduction

Micro- and nano-hydrodynamics

Flows of fluids (gases and liquids) through micro- (µm) and
nano-scale (nm) structures has become technologically important,
e.g., micro-fluidics, microelectromechanical systems (MEMS).

Biologically-relevant flows also occur at micro- and nano- scales.

The flows of interest often include suspended particles: colloids,
polymers (e.g., DNA), blood cells, bacteria: complex fluids.

Essential distinguishing feature from “ordinary” CFD: thermal
fluctuations!

A. Donev (CIMS) Hybrid Jan 2011 4 / 42



Introduction

Example: DNA Filtering

Fu et al., Nature
Nanotechnology 2 (2007)

H. Craighead, Nature 442 (2006)
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Introduction

Polymer chains

Johan Padding, Cambridge

Consider modeling of a polymer chain
in a flowing solution, for example,
DNA in a micro-array.

The detailed structure of the polymer
chain is usually coarse-grained to a
model of spherical beads.

E.g., Kuhn segments of the chain are
represented as spherical beads
connected by non-linear elastic springs
(FENE, worm-like, etc.)

The issue: How to coarse grain the fluid (solvent) and couple it to
the suspended structures?
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Introduction

Our approach: Particle/Continuum Hybrid

Figure: Hybrid method for a polymer chain.
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Particle Methods

Particle Methods for Complex Fluids

The most direct and accurate way to simulate the interaction between
the solvent (fluid) and solute (beads, chain) is to use a particle
scheme for both: Molecular Dynamics (MD)

mr̈i =
∑

j

f ij (rij )

The stiff repulsion among beads demands small time steps, and
chain-chain crossings are a problem.

Most of the computation is “wasted” on the unimportant solvent
particles!

Over longer times it is hydrodynamics (local momentum and energy
conservation) and fluctuations (Brownian motion) that matter.

We need to coarse grain the fluid model further: Replace
deterministic interactions with stochastic ones.
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Particle Methods

Direct Simulation Monte Carlo (DSMC)

(MNG)

Tethered polymer chain in
shear flow [1].

Stochastic conservative collisions of
randomly chosen nearby solvent
particles, as in DSMC (also related to
MPCD/SRD).

Solute particles still interact with both
solvent and other solute particles as
hard or soft spheres [2].

No fluid structure: Viscous ideal gas.

One can introduce biased collision
models to give the fluids consisten
structure and a non-ideal equation
of state. [3, 4].
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Coarse Graining

The Need for Coarse-Graining

In order to examine the time-scales involved, we focus on a
fundamental problem:
A single bead of size a and density ρ′ suspended in a stationary fluid
with density ρ and viscosity η (Brownian walker).

By increasing the size of the bead obviously the number of solvent
particles increases as N ∼ a3. But this is not the biggest problem
(we have large supercomputers).

The real issue is that a wide separation of timescales occurs: The
gap between the timescales of microscopic and macroscopic processes
widens as the bead becomes much bigger than the solvent particles
(water molecules).

Typical bead sizes are nm (nano-colloids, short polymers) or µm
(colloids, DNA), while typical atomistic sizes are 1Å = 0.1nm.
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Coarse Graining

Brownian Bead

Classical picture for the following dissipation process: Push a sphere
suspended in a liquid with initial velocity Vth ≈

√
kT/M, M ≈ ρ′a3,

and watch how the velocity decays:

Sound waves are generated from the sudden compression of the fluid
and they take away a fraction of the kinetic energy during a sonic time
tsonic ≈ a/c, where c is the (adiabatic) sound speed.
Viscous dissipation then takes over and slows the particle
non-exponentially over a viscous time tvisc ≈ ρa2/η, where η is the
shear viscosity. Note that the classical Langevin time scale
tLang ≈ m/ηa applies only to unrealistically dense beads!
Thermal fluctuations get similarly dissipated, but their constant
presence pushes the particle diffusively over a diffusion time
tdiff ≈ a2/D, where D ∼ kT/(aη).
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Coarse Graining

Timescale Estimates

The mean collision time is tcoll ≈ λ/vth ∼ η/(ρc2), where the thermal

velocity is vth ≈
√

kT
m , for water

tcoll ∼ 10−15s = 1fs

The sound time

tsonic ∼
{

1ns for a ∼ µm
1ps for a ∼ nm

, with gap
tsonic

tcoll
∼ a

λ
∼ 102 − 105
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Coarse Graining

Estimates contd...

Viscous time estimates

tvisc ∼
{

1µs for a ∼ µm
1ps for a ∼ nm

, with gap
tvisc

tsonic
∼
√

C
a

λ
∼ 1− 103

Finally, the diffusion time can be estimated to be

tdiff ∼
{

1s for a ∼ µm
1ns for a ∼ nm

, with gap
tdiff

tvisc
∼ a

φR
∼ 103 − 106

which can now reach macroscopic timescales!
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Coarse Graining

Levels of Coarse-Graining

Figure: From Pep Español, “Statistical Mechanics of Coarse-Graining”
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Fluctuating Hydrodynamics

Continuum Models of Fluid Dynamics

Formally, we consider the continuum field of conserved quantities

U(r, t) =

 ρ
j
e

 ∼= Ũ(r, t) =
∑

i

 mi

miυi

miυ
2
i /2

 δ [r − ri (t)] ,

where the symbol ∼= means that U(r, t) approximates the true
atomistic configuration Ũ(r, t) over long length and time scales.

Formal coarse-graining of the microscopic dynamics has been
performed to derive an approximate closure for the macroscopic
dynamics [5].

This leads to SPDEs of Langevin type formed by postulating a
random flux term in the usual Navier-Stokes-Fourier equations with
magnitude determined from the fluctuation-dissipation balance
condition, following Landau and Lifshitz.
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Fluctuating Hydrodynamics

The SPDEs of Fluctuating Hydrodynamics

Due to the microscopic conservation of mass, momentum and
energy,

∂tU = −∇ · [F(U)−Z] = −∇ · [FH(U)− FD(∇U)− BW] ,

where the flux is broken into a hyperbolic, diffusive, and a
stochastic flux.

Here W is spatio-temporal white noise, i.e., a Gaussian random field
with covariance

〈Wi (r, t)W?
j (r, t ′)〉 = (δij ) δ(t − t ′)δ(r − r′).

Adding stochastic fluxes to the non-linear NS equations produces
ill-behaved stochastic PDEs (solution is too irregular), but we will
ignore that for now...
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Fluctuating Hydrodynamics

Compressible Fluctuating Hydrodynamics

Dtρ =− ρ∇ · v
ρ (Dtv) =−∇P + ∇ ·

(
η∇v + Σ

)
ρcp (DtT ) =DtP + ∇ · (µ∇T + Ξ) +

(
η∇v + Σ

)
: ∇v,

where the variables are the density ρ, velocity v, and temperature T
fields,

Dt� = ∂t� + v ·∇ (�)

∇v = (∇v + ∇vT )− 2 (∇ · v) I/3

and capital Greek letters denote stochastic fluxes:

Σ =
√

2ηkBT W .

〈Wij (r, t)W?
kl (r′, t ′)〉 = (δikδjl + δilδjk − 2δijδkl/3) δ(t − t ′)δ(r − r′)
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Fluctuating Hydrodynamics

Incompressible Fluctuating Navier-Stokes

Ignoring density and temperature fluctuations, we obtain the
incompressible approximation:

ρDtv = η∇2v −∇π +
√

2ηkBT (∇ ·W) ,

∇ · v = 0

where the stochastic stress tensor W is a white-noise random
Gaussian tensor field with covariance

〈Wij (r, t)W?
kl (r′, t ′)〉 = (δikδjl ) δ(t − t ′)δ(r − r′).

We have algorithms and codes to solve the compressible equations,
and we are now working on the incompressible ones.

Solving them numerically requires paying attention to discrete
fluctuation-dissipation balance, in addition to the usual
deterministic difficulties [6].
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Hybrid Particle-Continuum Method

Solute-Solvent Coupling using Particles

MNG

Split the domain into a particle and a
continuum (hydro) subdomains,
with timesteps ∆tH = K∆tP .

Hydro solver is a simple explicit
(fluctuating) compressible LLNS
code and is not aware of particle
patch.

The method is based on Adaptive
Mesh and Algorithm Refinement
(AMAR) methodology for conservation
laws and ensures strict conservation
of mass, momentum, and energy.
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Hybrid Particle-Continuum Method

Continuum-Particle Coupling

Each macro (hydro) cell is either particle or continuum. There is
also a reservoir region surrounding the particle subdomain.

The coupling is roughly of the state-flux form:

The continuum solver provides state boundary conditions for the
particle subdomain via reservoir particles.
The particle subdomain provides flux boundary conditions for the
continuum subdomain.

The fluctuating hydro solver is oblivious to the particle region: Any
conservative explicit finite-volume scheme can trivially be substituted.

The coupling is greatly simplified because the particle fluid is ideal (no
internal structure): No overlap region.

”A hybrid particle-continuum method for hydrodynamics of complex fluids”, A.
Donev and J. B. Bell and A. L. Garcia and B. J. Alder, SIAM J. Multiscale
Modeling and Simulation 8(3):871-911, 2010
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Hybrid Particle-Continuum Method

Hybrid Algorithm

Steps of the coupling algorithm [7]:

1 The hydro solution is computed everywhere, including the particle
patch, giving an estimated total flux ΦH .

2 Reservoir particles are inserted at the boundary of the particle patch
based on Chapman-Enskog distribution from kinetic theory,
accounting for both collisional and kinetic viscosities.

3 Reservoir particles are propagated by ∆t and collisions are processed
(including virtual particles!), giving the total particle flux Φp.

4 The hydro solution is overwritten in the particle patch based on the
particle state up.

5 The hydro solution is corrected based on the more accurate flux,
uH ← uH −ΦH + Φp.

A. Donev (CIMS) Hybrid Jan 2011 25 / 42



Hybrid Particle-Continuum Method Brownian Bead

Velocity Autocorrelation Function

We investigate the velocity autocorrelation function (VACF) for a
Brownian bead

C (t) = 2d−1 〈v(t0) · v(t0 + t)〉

From equipartition theorem C (0) = kBT/M.

For a neutrally-boyant particle, ρ′ = ρ, incompressible hydrodynamic
theory gives C (0) = 2kBT/3M because the momentum correlations
decay instantly due to sound waves.

Hydrodynamic persistence (conservation) gives a long-time
power-law tail C (t) ∼ (kBT/M)(t/tvisc)−3/2 not reproduced in
Brownian dynamics.
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Hybrid Particle-Continuum Method Brownian Bead

VACF
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Hybrid Particle-Continuum Method Adiabatic Piston

The adiabatic piston problem

MNG
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Hybrid Particle-Continuum Method Adiabatic Piston

Relaxation Toward Equilibrium
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Figure: Massive rigid piston (M/m = 4000) not in mechanical equilibrium: The
deterministic hybrid gives the wrong answer!
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Hybrid Particle-Continuum Method Adiabatic Piston

VACF for Piston
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Figure: The VACF for a rigid piston of mas M/m = 1000 at thermal equilibrium:
Increasing the width of the particle region does not help: One must
include the thermal fluctuations in the continuum solver!
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Nonequilibrium Fluctuations

Fluctuations in the presence of gradients

At equilibrium, hydrodynamic fluctuations have non-trivial temporal
correlations, but there are no spatial correlations between any
variables.

When macroscopic gradients are present, however, long-ranged
correlated fluctuations appear.

Consider a binary mixture of fluids and consider concentration
fluctuations around a steady state c0(r):

c(r, t) = c0(r) + δc(r, t)

The concentration fluctuations are advected by the random
velocities v(r, t), approximately:

(δc)t + v ·∇c0 = D∇2 (δc) +
√

2DkBT (∇ ·Wc)

The velocity fluctuations drive and amplify the concentration
fluctuations leading to so-called giant fluctuations.
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Nonequilibrium Fluctuations

Equilibrium versus Non-Equilibrium

Results obtained using our fluctuating continuum compressible solver.

Concentration for a mixture of two (heavier red and lighter blue) fluids at
equilibrium, in the presence of gravity.

No gravity but a similar non-equilibrium concentration gradient is
imposed via the boundary conditions.
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Nonequilibrium Fluctuations

Giant Fluctuations during diffusive mixing

Figure: Snapshots of the concentration during the diffusive mixing of two fluids
(red and blue) at t = 1 (top), t = 4 (middle), and t = 10 (bottom), starting from
a flat interface (phase-separated system) at t = 0.
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Nonequilibrium Fluctuations

Giant Fluctuations in Experiments

Figure: Experimental snapshots of the steady-state concentration fluctuations in a
solution of polystyrene in water with a strong concentration gradient imposed via
a stabilizing temperature gradient, in Earth gravity (left), and in microgravity
(right) [private correspondence with Roberto Cerbino]. The strong enhancement
of the fluctuations in microgravity is evident.
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Nonequilibrium Fluctuations

Fluctuation-Enhanced Diffusion Coefficient

We study the following simple model steady-state system:
A quasi-two dimensional mixture of identical but labeled (as
components 1 and 2) fluids is enclosed in a box of lengths
Lx × Ly × Lz , where Lz � Lx/y . Periodic boundary conditions are
applied in the x (horizontal) and z (depth) directions, and
impermeable constant-temperature walls are placed at the top and
bottom boundaries. A weak constant concentration gradient
∇c0 = gc ŷ is imposed along the y axes by enforcing constant
concentration boundary conditions at the top and bottom walls.

Incompressible (isothermal) linearized fluctuating hydrodynamics is
given by:

(δc)t + v ·∇c0 = −D∇2 (δc) +
√

2DkBT (∇ ·Wc)

ρvt = η∇2v −∇π +
√

2ηkBT (∇ ·W) and ∇ · v = 0
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Nonequilibrium Fluctuations

Fluctuation-Enhanced Diffusion Coefficient

Solve in Fourier space to obtain the correlations (static structure
factors) between velocity and concentration fluctuations:

Ŝc,vy (k) = 〈(δ̂c)(v̂?
y )〉 ∼ −

(
k2
⊥k−4

)
gc ,

which are seen to diverge at small wavenumbers k.

The nonlinear concentration equation includes a contribution to the
mass flux due to advection by the fluctuating velocities,

∂t (δc)+ρ0v ·∇c0 = ∇ ·(j + Ψ) = ∇ · [D0∇ (δc)− ρ0 (δc) v]+∇ ·Ψ,

where we have denoted the so-called bare diffusion coefficient with
D0.

To leading order, the renormalized diffusion coefficient includes a
fluctuation enhancement ∆D due to thermal velocity fluctuations,

〈j〉 ≈ (D0 + ∆D)∇c0 =

[
D0 − (2π)−3

∫
k

Ŝc,vy (k) dk

]
∇c0.
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Nonequilibrium Fluctuations

Fluctuation-Enhanced Diffusion Coefficient

The effective transport coefficient Deff = D0 + ∆D depends on the
small wavenumber cutoff kmin ∼ 2π/L, where L is the system size.

For our quasi two-dimensional model, assuming Lx � Ly , one obtains
[8] a logarithmic growth of the fluctuation-renormalized diffusion
coefficient

∆D ≈ kBT [4πρ(χ0 + ν)Lz ]−1 ln Lx .

This can be tested in particle simulations by calculating the mass
current of the first fluid component:

〈jy 〉 = 〈ρ1v1,y 〉 = 〈ρ1〉〈v1,y 〉+ 〈(δρ1)(δv1,y )〉,

defining a splitting of the total mass transfer into a diffusive or bare
and an advective or fluctuation piece:

〈ρ1v1,y 〉 = Deff (∇y c0)

〈ρ1〉〈v1,y 〉 = D0 (∇c)
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Nonequilibrium Fluctuations

Particle Results
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Figure: Fluctuating hydro correctly predicts the dependence on system size!
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Nonequilibrium Fluctuations

Conclusions

Coarse-grained particle methods can be used to accelerate
hydrodynamic calculations at small scales.

Hybrid particle continuum methods closely reproduce purely
particle simulations at a fraction of the cost.

It is necessary to include fluctuations in the continuum subdomain
in hybrid methods.

Advection by the fluctuating velocities fields leads to some very
interesting physics and mathematics, such as giant fluctuations and
renormalized transport coefficients.
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Nonequilibrium Fluctuations

Future Directions

Improve and implement in a public-domain code the stochastic
particle methods (parallelize, add chemistry, analyze theoretically).

Develop numerical schemes for incompressible and Low-Mach
Number fluctuating hydrodynamics.

Theoretical work on the equations of fluctuating hydrodynamics:
regularization, renormalization, systematic coarse-graining.

Direct fluid-structure coupling between fluctuating hydrodynamics
and microstructure (solute beads).

Ultimately we require an Adaptive Mesh and Algorithm
Refinement (AMAR) framework that couples a particle model
(micro), with compressible fluctuating Navier-Stokes (meso), and
incompressible or low Mach CFD (macro).
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Nonequilibrium Fluctuations
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