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Introduction

Micro- and nano-hydrodynamics

Flows of fluids (gases and liquids) through micro- (µm) and
nano-scale (nm) structures has become technologically important,
e.g., micro-fluidics, microelectromechanical systems (MEMS).

Biologically-relevant flows also occur at micro- and nano- scales.

An important feature of small-scale flows, not discussed here, is
surface/boundary effects (e.g., slip in the contact line problem).

Essential distinguishing feature from “ordinary” CFD: thermal
fluctuations!

I hope to demonstrate the general conclusion that fluctuations
should be taken into account at all levels.
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Introduction

Deterministic Diffusive Mixing
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Introduction

Fractal Fronts in Diffusive Mixing

Snapshots of concentration in a miscible mixture showing the development
of a rough diffusive interface between two miscible fluids in zero gravity
[1, 2, 3]. A similar pattern is seen over a broad range of Schmidt numbers
and is affected strongly by nonzero gravity.
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Fluctuating Hydrodynamics

Fluctuating Navier-Stokes Equations

We will consider a binary fluid mixture with mass concentration
c = ρ1/ρ for two fluids that are dynamically identical, where
ρ = ρ1 + ρ2 (e.g., fluorescently-labeled molecules).

Ignoring density and temperature fluctuations, equations of
incompressible isothermal fluctuating hydrodynamics are

∂tv + v ·∇v =−∇π + ν∇2v + ∇ ·
(√

2νρ−1 kBT W
)

∂tc + v ·∇c =χ∇2c + ∇ ·
(√

2mχρ−1 c(1− c)W(c)

)
,

where the kinematic viscosity ν = η/ρ, and π is determined from
incompressibility, ∇ · v = 0.

We assume that W can be modeled as spatio-temporal white noise
(a delta-correlated Gaussian random field), e.g.,

〈Wij(r, t)W?
kl(r′, t ′)〉 = (δikδjl + δilδjk) δ(t − t ′)δ(r − r′).

.
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Fluctuating Hydrodynamics

Fluctuating Hydrodynamics Equations

Adding stochastic fluxes to the non-linear NS equations produces
ill-behaved stochastic PDEs (solution is too irregular).

No problem if we linearize the equations around a steady mean
state, to obtain equations for the fluctuations around the mean.

Finite-volume discretizations naturally impose a grid-scale
regularization (smoothing) of the stochastic forcing.

A renormalization of the transport coefficients is also necessary [1].

We have algorithms and codes to solve the compressible equations
(collocated and staggered grid), and recently also the
incompressible and low Mach number ones (staggered grid) [4, 3].

Solving these sort of equations numerically requires paying attention
to discrete fluctuation-dissipation balance, in addition to the usual
deterministic difficulties [4].
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Fluctuating Hydrodynamics

Finite-Volume Schemes

ct = −v ·∇c + χ∇2c + ∇ ·
(√

2χW
)

= ∇ ·
[
−cv + χ∇c +

√
2χW

]
Generic finite-volume spatial discretization

ct = D
[
(−Vc + Gc) +

√
2χ/ (∆t∆V )W

]
,

where D : faces→ cells is a conservative discrete divergence,
G : cells→ faces is a discrete gradient.

Here W is a collection of random normal numbers representing the
(face-centered) stochastic fluxes.

The divergence and gradient should be duals, D? = −G.

Advection should be skew-adjoint (non-dissipative) if ∇ · v = 0,

(DV)? = − (DV) if (DV) 1 = 0.
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Giant Fluctuations in Microgravity

Nonequilibrium Fluctuations

When macroscopic gradients are present, steady-state thermal
fluctuations become long-range correlated.

Consider a binary mixture of fluids and consider concentration
fluctuations around a steady state c0(r):

c(r, t) = c0(r) + δc(r, t)

The concentration fluctuations are advected by the random
velocities v(r, t) = δv(r, t), approximately:

∂t (δc) + (δv) ·∇c0 = χ∇2 (δc) +
√

2χkBT (∇ ·Wc)

The velocity fluctuations drive and amplify the concentration
fluctuations leading to so-called giant fluctuations [2].
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Giant Fluctuations in Microgravity

Back of the Envelope

The coupled linearized velocity-concentration system in one
dimension:

vt = νvxx +
√

2νWx

ct = χcxx − v c̄x ,

where g = c̄x is the imposed background concentration gradient.
The linearized system can be easily solved in Fourier space to give a
power-law divergence for the spectrum of the concentration
fluctuations as a function of wavenumber k,

〈ĉ ĉ?〉 ∼ (c̄x)2

χ(χ+ ν)k4
.

Concentration fluctuations become long-ranged and are enhanced as
the square of the gradient, to values much larger than equilibrium
fluctuations.
In real life the divergence is suppressed by surface tension, gravity, or
boundaries (usually in that order).
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Giant Fluctuations in Microgravity

Giant Fluctuations in Experiments

Experimental results by A. Vailati et al. from a microgravity environment
[2] showing the enhancement of concentration fluctuations in space (box
scale is macroscopic: 5mm on the side, 1mm thick).
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Giant Fluctuations in Microgravity

Giant Fluctuations in Simulations

Figure: Computer simulations of microgravity experiments.
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Giant Fluctuations in Microgravity

Spectrum of Concentration Fluctuations

The linearized equations can be solved in the Fourier domain
(ignoring boundaries for now) for any wavenumber k, denoting
k⊥ = k sin θ and k‖ = k cos θ.

One finds giant concentration fluctuations proportional to the
square of the applied gradient,

Sneq
c,c = 〈(δ̂c)(δ̂c

?
)〉 =

kBT

ρχ(ν + χ)k4

(
sin2 θ

)
(∇c̄)2 , (1)

The finite height of the container h imposes no-slip boundary
conditions, which damps the power law at wavenumbers k ∼ 2π/h.

This is difficult to calculate analytically and one has to make drastic
approximations, and simulations are ideal to compare to experiments.

However, the separation of time scales between the slow diffusion
and fast vorticity fluctuations poses a big challenge.
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Giant Fluctuations in Microgravity

Simulation vs. Experiments
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Figure: Giant fluctuations: simulation vs. experiment vs. approximate theory.
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Low Mach Number Fluctuating Hydrodynamics

Low Mach Approximation

For isothermal mixtures of fluids with unequal densities, the incompressible
approximation needs to be replaced with a low Mach approximation

Dtρ =− ρ (∇ · v)

ρ (Dtv) =−∇π + ∇ ·
[
η
(
∇v + ∇Tv

)
+ Σ

]
+ ρg

ρ (Dtc) =∇ · [ρχ (∇c) + Ψ] ,

where Dt� = ∂t� + v ·∇ (�) and Σ and Ψ are stochastic fluxes
determined from fluctuation-dissipation balance.
The incompressibility condition is replaced by the equation of state
(EOS) constraint

∇ · v = ρ−1

(
∂ρ

∂c

)
P,T

(Dtc) = β (Dtc) ,

where β is the solutal expansion coefficient.
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Low Mach Number Fluctuating Hydrodynamics

Diffusive Mixing in Gravity

A. Donev (CIMS) Giant. Fluct. 11/2012 20 / 38



Low Mach Number Fluctuating Hydrodynamics

Boussinesq Approximation

When β 6= 0 changes in composition (concentration) due to diffusion
cause local expansion and contraction of the fluid and thus a nonzero
∇ · v.

The low Mach number equations are substantially harder to solve
computationally because of the nontrivial constraint. They are also
more problematic mathematically...

Note that the usual incompressibility constraint ∇ · v = 0 is obtained
as β → 0.

A commonly-used simplification is the Boussinesq approximation, in
which it is assumed that β � 1. More precisely, take the limit β → 0
and g →∞ while keeping the product βg fixed.

In theoretical calculations it is assumed that the transport
coefficients, i.e., the viscosity and diffusion coefficients, are
constant.

This is definitely not so for viscosity in a water glycerol mixture as
used by Croccolo et al. [5]!
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Low Mach Number Fluctuating Hydrodynamics

Theoretical Approximations
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Figure: Comparison between the simple constant-coefficient Boussinesq theory
and numerical results.
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Comparison to Molecular Dynamics

Molecular Dynamics Simulations

We performed event-driven hard disk simulations of diffusive mixing
with about 1.25 million disks.

The two species had equal molecular diameter but potentially
different molecular masses, with density ratio R = m2/m1 = 1, 2 or 4.

In order to convert the particle data to hydrodynamic data, we
employed finite-volume averaging over a grid of 1282 hydrodynamic
cells 10× 10 molecular diameters (about 76 disks per hydrodynamic
cell).

We also performed fluctuating low Mach number finite-volume
simulations using the same grid of hydrodynamic cells, at only a
small fraction of the computational cost [6].

Quantitative statistical comparison between the molecular dynamics
and fluctuating hydrodynamics was excellent once the values of the
bare diffusion and viscosity were adjusted based on the level of
coarse-graining.
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Comparison to Molecular Dynamics

Hard-Disk Simulations
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Comparison to Molecular Dynamics

MD vs. Hydrodynamics
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Figure: Diffusive evolution of the horizontally-averaged density for density
ratio R = 4, as obtained from HDMD simulations (circles), deterministic
hydrodynamics with effective diffusion coefficient χeff = 0.2 (dashed lines), and
fluctuating hydrodynamics with bare diffusion coefficient χ0 = 0.09 (squares).
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Comparison to Molecular Dynamics

MD vs. Hydrodynamics contd.
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Figure: Discrete spatial spectrum of the interface fluctuations for mass ratio
R = 4 at several points in time, for fluctuating hydrodynamics (squares with error
bars) and HDMD (circles, error bars comparable to those for squares).
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Comparison to Molecular Dynamics

“Hard-Sphere” Simulations
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Comparison to Molecular Dynamics

Interface Spectrum in 3D
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Limiting Diffusive Dynamics

Passively-Advected (Fluorescent) Tracers
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Limiting Diffusive Dynamics

Diffusion by Velocity Fluctuations

Consider a large collection of passively-advected particles immersed
in a fluctuating Stokes velocity field,

∂tv =P
[
ν∇2v + ∇ ·

(√
2νρ−1 kBT W

)]
∂tc =− v ·∇c + χ∇2c + ∇ ·

(√
2χcW(c)

)
,

where c is the number density for the particles, and P is the
orthogonal projection onto the space of divergence-free velocity fields.

In liquids diffusion of mass is much slower than diffusion of
momentum, χ� ν, leading to a Schmidt number

Sc =
ν

χ
∼ 103.

[With Eric Vanden-Eijnden]: There exists a limiting dynamics for c in
the limit Sc →∞ in the scaling

ν = χSc , χ(χ+ ν) ≈ χν = const
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Limiting Diffusive Dynamics

Limiting Dynamics

Formal adiabatic elimination of v as a fast variable gives
approximately the following limiting stochastic advection-diffusion
equation for concentration (common in turbulence models):

∂tc = −v ·∇c + (χ+ ∆χ)∇2c,

where ∆χ is a renormalization of the diffusion coefficient [1],
approximated here by a local diffusion.

The advection velocity here is a white-in-time process that can be
sampled by solving the steady Stokes equation

∇π = ν∇2v + ∇ ·
(√

2νρ−1 kBT W
)

∇ · v = 0.
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Limiting Diffusive Dynamics

Simulating the Limiting Dynamics

The limiting dynamics can be efficiently simulated using the following
predictor-corrector algorithm:

1 Generate a random advection velocity

∇πn+ 1
2 = ν

(
∇2vn

)
+ ∆t−

1
2∇ ·

(√
2νρ−1 kBT Wn

)
∇ · vn = 0.

2 Take a predictor step for concentration, e.g., using Crank-Nicolson,

c̃n+1 − cn

∆t
= −vn ·∇cn + χ∇2

(
cn + c̃n+1

2

)
.

3 Take a corrector step for concentration

cn+1 − cn

∆t
= −vn ·∇

(
cn + c̃n+1

2

)
+ χ∇2

(
cn + cn+1

2

)
.
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Limiting Diffusive Dynamics

Changing Sc from 1 to ∞
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Limiting Diffusive Dynamics

Questionable Separation

The above animation makes it clear Sc needs to be very large to be
close to the limiting dynamics.

The separation of time scales between the slowest velocity mode and
the fastest concentration mode is

k2
maxν

k2
minχ

=
Sc
N2
c

,

where Nc is the number of modes (along a direction).

Full separation of scales requires Sc � N2
c , which is often not met in

practice, e.g., Sc ∼ 500 in a typical liquid like water.

Similarly questionable is the assumption that particles immersed in
a fluid follow a diffusion equation: what about large-scale slow
velocity fluctuations?

Under certain conditions the limiting dynamics should be a good
approximation, but seems hard to justify in general.
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Limiting Diffusive Dynamics

Conclusions

Fluctuations are not just a microscopic phenomenon: giant
fluctuations can reach macroscopic dimensions or certainly dimensions
much larger than molecular.

Fluctuating hydrodynamics agrees with molecular dynamics of
diffusive mixing in mixtures of hard disks and seems to be a very good
coarse-grained model for fluids, despite unresolved issues.

Diffusion is strongly affected and often dominated by advection by
velocity fluctuations.

In the presence of density variations one should use the low Mach
number equations instead of the incompressible approximation.

Even coarse-grained methods need to be accelerated due to large
separation of time scales between advective and diffusive
phenomena. One can both decrease or increase the separation of
scales to allow for efficient simulation.

A. Donev (CIMS) Giant. Fluct. 11/2012 37 / 38



Limiting Diffusive Dynamics

References

A. Donev, A. L. Garcia, Anton de la Fuente, and J. B. Bell.

Enhancement of Diffusive Transport by Nonequilibrium Thermal Fluctuations.
J. of Statistical Mechanics: Theory and Experiment, 2011:P06014, 2011.

A. Vailati, R. Cerbino, S. Mazzoni, C. J. Takacs, D. S. Cannell, and M. Giglio.

Fractal fronts of diffusion in microgravity.
Nature Communications, 2:290, 2011.

F. Balboa Usabiaga, J. B. Bell, R. Delgado-Buscalioni, A. Donev, T. G. Fai, B. E. Griffith, and C. S. Peskin.

Staggered Schemes for Incompressible Fluctuating Hydrodynamics.
To appear in SIAM J. Multiscale Modeling and Simulation, 2012.

A. Donev, E. Vanden-Eijnden, A. L. Garcia, and J. B. Bell.

On the Accuracy of Explicit Finite-Volume Schemes for Fluctuating Hydrodynamics.
CAMCOS, 5(2):149–197, 2010.

F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell.

Nondiffusive decay of gradient-driven fluctuations in a free-diffusion process.
Phys. Rev. E, 76(4):041112, 2007.

A. J. Nonaka, Y. Sun, T. Fai, A. L. Garcia, J. B. Bell, and A. Donev.

Low Mach Number Fluctuating Hydrodynamics of Diffusively Mixing Fluids.
To be submitted to SIAM J. Multiscale Modeling and Simulation, 2012.

A. Donev (CIMS) Giant. Fluct. 11/2012 38 / 38


	Introduction
	Fluctuating Hydrodynamics
	Giant Fluctuations in Microgravity
	Low Mach Number Fluctuating Hydrodynamics
	Comparison to Molecular Dynamics
	Limiting Diffusive Dynamics

