Computational Fluctuating Hydrodynamics Modeling of Giant Fluctuations

Aleksandar Donev

Courant Institute, New York University & Eric Vanden-Eijnden, Courant John B. Bell, LBNL Alejandro Garcia, SJSU Boyce Griffith, Courant and others

Dipartimento di Fisica, Università degli Studi di Milano November 2012

Introduction

- Pluctuating Hydrodynamics
- 3 Giant Fluctuations in Microgravity
- 4 Low Mach Number Fluctuating Hydrodynamics
- 5 Comparison to Molecular Dynamics
- **6** Limiting Diffusive Dynamics

Micro- and nano-hydrodynamics

- Flows of fluids (gases and liquids) through micro- (μm) and nano-scale (nm) structures has become technologically important, e.g., micro-fluidics, microelectromechanical systems (MEMS).
- Biologically-relevant flows also occur at micro- and nano- scales.
- An important feature of small-scale flows, not discussed here, is **surface/boundary effects** (e.g., slip in the contact line problem).
- Essential distinguishing feature from "ordinary" CFD: thermal fluctuations!
- I hope to demonstrate the general conclusion that **fluctuations should be taken into account at all levels**.

Introduction

Deterministic Diffusive Mixing

Introduction

Fractal Fronts in Diffusive Mixing

Snapshots of concentration in a miscible mixture showing the development of a *rough* diffusive interface between two miscible fluids in zero gravity [1, 2, 3]. A similar pattern is seen over a broad range of Schmidt numbers and is affected strongly by nonzero gravity.

Fluctuating Navier-Stokes Equations

- We will consider a binary fluid mixture with mass concentration $c = \rho_1/\rho$ for two fluids that are dynamically identical, where $\rho = \rho_1 + \rho_2$ (e.g., fluorescently-labeled molecules).
- Ignoring density and temperature fluctuations, equations of incompressible isothermal fluctuating hydrodynamics are

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla \pi + \nu \nabla^2 \mathbf{v} + \nabla \cdot \left(\sqrt{2\nu\rho^{-1} k_B T} \mathcal{W}\right)$$
$$\partial_t c + \mathbf{v} \cdot \nabla c = \chi \nabla^2 c + \nabla \cdot \left(\sqrt{2m\chi\rho^{-1} c(1-c)} \mathcal{W}^{(c)}\right),$$

where the **kinematic viscosity** $\nu = \eta/\rho$, and π is determined from incompressibility, $\nabla \cdot \mathbf{v} = 0$.

• We assume that \mathcal{W} can be modeled as spatio-temporal white noise (a delta-correlated Gaussian random field), e.g.,

$$\langle \mathcal{W}_{ij}(\mathbf{r},t)\mathcal{W}_{kl}^{\star}(\mathbf{r}',t') \rangle = (\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk})\,\delta(t-t')\delta(\mathbf{r}-\mathbf{r}').$$

Fluctuating Hydrodynamics Equations

- Adding stochastic fluxes to the **non-linear** NS equations produces **ill-behaved stochastic PDEs** (solution is too irregular).
- No problem if we **linearize** the equations around a **steady mean state**, to obtain equations for the fluctuations around the mean.
- Finite-volume discretizations naturally impose a grid-scale **regularization** (smoothing) of the stochastic forcing.
- A renormalization of the transport coefficients is also necessary [1].
- We have algorithms and codes to solve the compressible equations (collocated and staggered grid), and recently also the incompressible and low Mach number ones (staggered grid) [4, 3].
- Solving these sort of equations numerically requires paying attention to **discrete fluctuation-dissipation balance**, in addition to the usual deterministic difficulties [4].

Finite-Volume Schemes

$$c_t = -\mathbf{v} \cdot \nabla c + \chi \nabla^2 c + \nabla \cdot \left(\sqrt{2\chi} \mathcal{W}\right) = \nabla \cdot \left[-c\mathbf{v} + \chi \nabla c + \sqrt{2\chi} \mathcal{W}\right]$$

• Generic finite-volume spatial discretization

$$\mathbf{c}_t = \mathbf{D}\left[(-\mathbf{V}\mathbf{c} + \mathbf{G}\mathbf{c}) + \sqrt{2\chi/(\Delta t \Delta V)}\mathbf{W} \right],$$

where D : faces \rightarrow cells is a **conservative** discrete divergence, G : cells \rightarrow faces is a discrete gradient.

- Here **W** is a collection of random normal numbers representing the (face-centered) stochastic fluxes.
- The divergence and gradient should be duals, $D^* = -G$.
- Advection should be **skew-adjoint** (non-dissipative) if $\nabla \cdot \mathbf{v} = 0$,

$$(DV)^* = -(DV)$$
 if $(DV)1 = 0$.

- When macroscopic gradients are present, steady-state thermal fluctuations become **long-range correlated**.
- Consider a binary mixture of fluids and consider concentration fluctuations around a steady state c₀(r):

$$c(\mathbf{r},t) = c_0(\mathbf{r}) + \delta c(\mathbf{r},t)$$

• The concentration fluctuations are advected by the random velocities $\mathbf{v}(\mathbf{r}, t) = \delta \mathbf{v}(\mathbf{r}, t)$, approximately:

$$\partial_t \left(\delta c \right) + \left(\delta \mathbf{v} \right) \cdot \boldsymbol{\nabla} c_0 = \chi \boldsymbol{\nabla}^2 \left(\delta c \right) + \sqrt{2 \chi k_B T} \left(\boldsymbol{\nabla} \cdot \boldsymbol{\mathcal{W}}_c \right)$$

• The velocity fluctuations drive and amplify the concentration fluctuations leading to so-called **giant fluctuations** [2].

Back of the Envelope

• The coupled *linearized velocity*-concentration system in **one dimension**:

$$\begin{aligned} \mathbf{v}_t &= \nu \mathbf{v}_{\mathsf{x}\mathsf{x}} + \sqrt{2\nu} \, W_{\mathsf{x}} \\ \mathbf{c}_t &= \chi \mathbf{c}_{\mathsf{x}\mathsf{x}} - \mathbf{v} \, \overline{\mathbf{c}}_{\mathsf{x}}, \end{aligned}$$

where $g = \bar{c}_x$ is the imposed background concentration gradient.

• The linearized system can be easily solved in Fourier space to give a **power-law divergence** for the spectrum of the concentration fluctuations as a function of wavenumber *k*,

$$\langle \hat{c}\hat{c}^{\star}
angle \sim rac{\left(ar{c}_{x}
ight)^{2}}{\chi(\chi+
u)k^{4}}.$$

- Concentration fluctuations become **long-ranged** and are enhanced as the square of the gradient, to values much larger than equilibrium fluctuations.
- In real life the divergence is **suppressed** by surface tension, gravity, or boundaries (usually in that order).

A. Donev (CIMS)

Giant Fluctuations in Microgravity

Giant Fluctuations in Experiments

Experimental results by A. Vailati *et al.* from a microgravity environment [2] showing the enhancement of concentration fluctuations in space (box scale is **macroscopic**: 5mm on the side, 1mm thick).

Giant Fluctuations in Microgravity

Giant Fluctuations in Simulations

Figure: Computer simulations of microgravity experiments.

Giant Fluctuations in Microgravity Spectrum of Concentration Fluctuations

- The linearized equations can be solved in the Fourier domain (ignoring boundaries for now) for any wavenumber k, denoting k_⊥ = k sin θ and k_{||} = k cos θ.
- One finds **giant concentration fluctuations** proportional to the square of the applied gradient,

$$S_{c,c}^{\mathsf{neq}} = \langle (\widehat{\delta c}) (\widehat{\delta c}^{\star}) \rangle = \frac{k_B T}{\rho \chi (\nu + \chi) k^4} \left(\sin^2 \theta \right) \left(\nabla \bar{c} \right)^2, \qquad (1)$$

- The finite height of the container h imposes no-slip boundary conditions, which damps the power law at wavenumbers k ~ 2π/h.
- This is difficult to calculate analytically and one has to make drastic approximations, and **simulations** are ideal to compare to experiments.
- However, the **separation of time scales** between the slow diffusion and fast vorticity fluctuations poses a big challenge.

Giant Fluctuations in Microgravity

Simulation vs. Experiments

Figure: Giant fluctuations: simulation vs. experiment vs. approximate theory.

Low Mach Number Fluctuating Hydrodynamics

For isothermal mixtures of fluids with unequal densities, the incompressible approximation needs to be replaced with a **low Mach approximation**

$$D_{t}\rho = -\rho \left(\boldsymbol{\nabla} \cdot \mathbf{v} \right)$$

$$\rho \left(D_{t} \mathbf{v} \right) = -\boldsymbol{\nabla} \pi + \boldsymbol{\nabla} \cdot \left[\eta \left(\boldsymbol{\nabla} \mathbf{v} + \boldsymbol{\nabla}^{T} \mathbf{v} \right) + \boldsymbol{\Sigma} \right] + \rho \mathbf{g}$$

$$\rho \left(D_{t} c \right) = \boldsymbol{\nabla} \cdot \left[\rho \chi \left(\boldsymbol{\nabla} c \right) + \boldsymbol{\Psi} \right],$$

where $D_t \Box = \partial_t \Box + \mathbf{v} \cdot \nabla(\Box)$ and $\boldsymbol{\Sigma}$ and $\boldsymbol{\Psi}$ are stochastic fluxes determined from fluctuation-dissipation balance.

The incompressibility condition is replaced by the equation of state (EOS) constraint

$$\nabla \cdot \mathbf{v} = \rho^{-1} \left(\frac{\partial \rho}{\partial c} \right)_{P,T} (D_t c) = \beta (D_t c),$$

where β is the solutal expansion coefficient.

A. Donev (CIMS)

Low Mach Number Fluctuating Hydrodynamics

Diffusive Mixing in Gravity

Boussinesq Approximation

- When $\beta \neq 0$ changes in composition (concentration) due to diffusion cause local expansion and contraction of the fluid and thus a nonzero $\nabla \cdot \mathbf{v}$.
- The low Mach number equations are **substantially harder** to solve computationally because of the nontrivial constraint. They are also more problematic mathematically...
- Note that the usual incompressibility constraint ∇ · v = 0 is obtained as β → 0.
- A commonly-used simplification is the **Boussinesq approximation**, in which it is assumed that $\beta \ll 1$. More precisely, take the limit $\beta \rightarrow 0$ and $g \rightarrow \infty$ while keeping the product βg fixed.
- In theoretical calculations it is **assumed** that the **transport coefficients**, i.e., the viscosity and diffusion coefficients, **are constant**.
- This is definitely not so for viscosity in a water glycerol mixture as used by Croccolo et al. [5]!

Theoretical Approximations

Figure: Comparison between the simple constant-coefficient Boussinesq theory and numerical results.

A. Donev (CIMS)

Molecular Dynamics Simulations

- We performed event-driven **hard disk simulations** of diffusive mixing with about 1.25 million disks.
- The two species had equal molecular diameter but potentially different molecular masses, with density ratio $R = m_2/m_1 = 1, 2$ or 4.
- In order to convert the particle data to hydrodynamic data, we employed finite-volume averaging over a grid of 128^2 hydrodynamic cells 10×10 molecular diameters (about 76 disks per hydrodynamic cell).
- We also performed fluctuating low Mach number **finite-volume simulations** using the same grid of hydrodynamic cells, at only a small fraction of the computational cost [6].
- Quantitative statistical comparison between the molecular dynamics and fluctuating hydrodynamics was excellent once the values of the **bare diffusion** and **viscosity** were adjusted based on the level of coarse-graining.

Hard-Disk Simulations

MD vs. Hydrodynamics

Figure: Diffusive evolution of the horizontally-averaged density for density ratio R = 4, as obtained from HDMD simulations (circles), deterministic hydrodynamics with effective diffusion coefficient $\chi_{\text{eff}} = 0.2$ (dashed lines), and fluctuating hydrodynamics with bare diffusion coefficient $\chi_0 = 0.09$ (squares).

MD vs. Hydrodynamics contd.

Figure: Discrete spatial spectrum of the interface fluctuations for mass ratio R = 4 at several points in time, for fluctuating hydrodynamics (squares with error bars) and HDMD (circles, error bars comparable to those for squares).

"Hard-Sphere" Simulations

Interface Spectrum in 3D

A. Donev (CIMS)

Limiting Diffusive Dynamics

Passively-Advected (Fluorescent) Tracers

Diffusion by Velocity Fluctuations

• Consider a large collection of **passively-advected particles** immersed in a fluctuating Stokes velocity field,

$$\partial_t \mathbf{v} = \mathcal{P} \left[\nu \nabla^2 \mathbf{v} + \nabla \cdot \left(\sqrt{2\nu\rho^{-1} k_B T} \mathcal{W} \right) \right]$$
$$\partial_t c = -\mathbf{v} \cdot \nabla c + \chi \nabla^2 c + \nabla \cdot \left(\sqrt{2\chi c} \mathcal{W}^{(c)} \right),$$

where c is the number density for the particles, and \mathcal{P} is the orthogonal projection onto the space of divergence-free velocity fields.

• In liquids diffusion of mass is much slower than diffusion of momentum, $\chi \ll \nu$, leading to a **Schmidt number**

$$S_c = rac{
u}{\chi} \sim 10^3.$$

• [With *Eric Vanden-Eijnden*]: There exists a limiting dynamics for c in the limit $S_c \rightarrow \infty$ in the scaling

$$u = \chi S_c, \quad \chi(\chi + \nu) \approx \chi \nu = \text{const}$$

Limiting Dynamics

• Formal adiabatic elimination of **v** as a fast variable gives *approximately* the following limiting **stochastic advection-diffusion equation** for concentration (common in turbulence models):

$$\partial_t c = -\mathbf{v} \cdot \nabla c + (\chi + \Delta \chi) \nabla^2 c,$$

where $\Delta \chi$ is a **renormalization** of the diffusion coefficient [1], approximated here by a local diffusion.

• The advection velocity here is a **white-in-time** process that can be sampled by solving the steady Stokes equation

$$\nabla \pi = \nu \nabla^2 \mathbf{v} + \nabla \cdot \left(\sqrt{2\nu \rho^{-1} \, k_B T} \, \mathcal{W} \right)$$
$$\nabla \cdot \mathbf{v} = 0.$$

Simulating the Limiting Dynamics

The limiting dynamics can be efficiently simulated using the following **predictor-corrector algorithm**:

Generate a random advection velocity

$$\nabla \pi^{n+\frac{1}{2}} = \nu \left(\nabla^2 \mathbf{v}^n \right) + \Delta t^{-\frac{1}{2}} \nabla \cdot \left(\sqrt{2\nu \rho^{-1} k_B T} \, \mathcal{W}^n \right)$$
$$\nabla \cdot \mathbf{v}^n = 0.$$

Itake a predictor step for concentration, e.g., using Crank-Nicolson,

$$rac{ ilde{c}^{n+1}-c^n}{\Delta t}=-oldsymbol{v}^n\cdotoldsymbol{
abla}c^n+\chioldsymbol{
abla}^2\left(rac{c^n+ ilde{c}^{n+1}}{2}
ight).$$

Take a corrector step for concentration

$$\frac{c^{n+1}-c^n}{\Delta t} = -\mathbf{v}^n \cdot \nabla\left(\frac{c^n + \tilde{c}^{n+1}}{2}\right) + \chi \nabla^2\left(\frac{c^n + c^{n+1}}{2}\right)$$

Limiting Diffusive Dynamics

Changing S_c from 1 to ∞

Questionable Separation

- The above animation makes it clear S_c needs to be very large to be close to the limiting dynamics.
- The separation of time scales between the slowest velocity mode and the fastest concentration mode is

$$\frac{k_{\max}^2\nu}{k_{\min}^2\chi} = \frac{S_c}{N_c^2},$$

where N_c is the number of modes (along a direction).

- Full separation of scales requires $S_c \gg N_c^2$, which is often not met in practice, e.g., $S_c \sim 500$ in a typical liquid like water.
- Similarly **questionable** is the **assumption** that particles immersed in a fluid follow a diffusion equation: what about large-scale slow velocity fluctuations?
- Under certain conditions the limiting dynamics should be a good approximation, but seems hard to justify in general.

A. Donev (CIMS)

Conclusions

- Fluctuations are **not just a microscopic phenomenon**: giant fluctuations can reach macroscopic dimensions or certainly dimensions much larger than molecular.
- Fluctuating hydrodynamics agrees with molecular dynamics of diffusive mixing in mixtures of hard disks and seems to be a very good coarse-grained model for fluids, despite unresolved issues.
- Diffusion is strongly affected and often dominated by **advection by velocity fluctuations**.
- In the presence of density variations one should use the **low Mach number equations** instead of the incompressible approximation.
- Even coarse-grained methods need to be accelerated due to **large separation of time scales** between advective and diffusive phenomena. One can both decrease or increase the separation of scales to allow for efficient simulation.

References

A. Donev, A. L. Garcia, Anton de la Fuente, and J. B. Bell. Enhancement of Diffusive Transport by Nonequilibrium Thermal Fluctuations. J. of Statistical Mechanics: Theory and Experiment, 2011:P06014, 2011.

A. Vailati, R. Cerbino, S. Mazzoni, C. J. Takacs, D. S. Cannell, and M. Giglio. Fractal fronts of diffusion in microgravity. *Nature Communications*, 2:290, 2011.

F. Balboa Usabiaga, J. B. Bell, R. Delgado-Buscalioni, A. Donev, T. G. Fai, B. E. Griffith, and C. S. Peskin. Staggered Schemes for Incompressible Fluctuating Hydrodynamics. To appear in SIAM J. Multiscale Modeling and Simulation, 2012.

A. Donev, E. Vanden-Eijnden, A. L. Garcia, and J. B. Bell.

On the Accuracy of Explicit Finite-Volume Schemes for Fluctuating Hydrodynamics. CAMCOS, 5(2):149–197, 2010.

F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell. Nondiffusive decay of gradient-driven fluctuations in a free-diffusion process. *Phys. Rev. E*, 76(4):041112, 2007.

A. J. Nonaka, Y. Sun, T. Fai, A. L. Garcia, J. B. Bell, and A. Donev.

Low Mach Number Fluctuating Hydrodynamics of Diffusively Mixing Fluids. To be submitted to SIAM J. Multiscale Modeling and Simulation, 2012.