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Fluctuating Hydrodynamics of Diffusion

Fluctuating Hydrodynamics

The thermal velocity fluctuations are described by the (unsteady)
fluctuating Stokes equation,

ρ∂tv + ∇π = η∇2v +
√

2ηkBT ∇ · (σ ?W) , and ∇ · v = 0. (1)

where the stochastic momentum flux is spatio-temporal white
noise,

〈Wij (r, t)W?
kl (r′, t ′)〉 = (δikδjl + δilδjk) δ(t − t ′)δ(r − r′).

and the smoothing kernel σ filters out features at scales below a
cutoff scale σ.

The concentration c (r, t) of a passive tracer follows an (additive
noise) fluctuating advection-diffusion equation,

∂tc = −u ·∇c + χ0∇2c. (2)
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Fluctuating Hydrodynamics of Diffusion

Giant Fluctuations in Diffusive Mixing

Snapshots of concentration in a miscible mixture showing the development
of a rough diffusive interface due to the effect of thermal fluctuations.
These giant fluctuations have been studied experimentally and with
hard-disk molecular dynamics.
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Fluctuating Hydrodynamics of Diffusion

MD vs. Fluct Hydro
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Figure : Discrete spatial spectrum of the interface fluctuations, for fluctuating
hydrodynamics (squares) and HD-MD (circles).
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Fluctuating Hydrodynamics of Diffusion

Separation of Time Scales

In liquids molecules are caged (trapped) for long periods of time as
they collide with neighbors:
Momentum and heat diffuse much faster than does mass.

This means that χ� ν, leading to a Schmidt number

Sc =
ν

χ
∼ 103 − 104.

This extreme stiffness solving the concentration/tracer equation
numerically challenging.

There exists a limiting (overdamped) dynamics for c in the limit
Sc →∞ in the scaling

χν = const.
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Fluctuating Hydrodynamics of Diffusion

Overdamped Dynamics

Adiabatic mode elimination gives the following limiting Ito stochastic
advection-diffusion equation,

∂tc = ∇ · [χ (r)∇c]−w ·∇c, (3)

which is exactly the same as what was derived from Brownian
dynamics.
The advection velocity w (r, t) is white in time, with covariance
proportional to a Green-Kubo integral of the velocity auto-correlation
function,

〈w (r, t)⊗w
(
r′, t ′

)
〉 = 2 δ

(
t − t ′

) ∫ ∞
0
〈u (r, t)⊗ u

(
r′, t + t ′

)
〉dt ′

= 2R
(
r, r′
)
δ
(
t − t ′

)
=

kBT

η

∫
σ
(
r,q′

)
G
(
r′, r′′

)
σT
(
r′′,q′′

)
dq′dq′′,

where G is the Green’s function for steady Stokes flow with the
appropriate boundary conditions.
One can obtain the RPY tensor by making the filter σ be a surface
delta function over a sphere of radius σ.
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Giant Fluctuations

Giant Nonequilibrium Fluctuations

Experimental results by A. Vailati et al. from a microgravity environment
showing giant fluctuations in the concentration of polystyrene in toluene
in space (box scale is 5mm on the side, 1mm thick).
Fluctuations become macrosopically large at macroscopic scales!
These come because of hydrodynamic effects on diffusion in liquids.
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Giant Fluctuations

Linearized Fluctuating Hydrodynamics

When macroscopic gradients are present, steady-state thermal
fluctuations become long-range correlated.

Consider a binary mixture of fluids and consider concentration
fluctuations around a macroscopic state c̄(r, t), c = c̄ + δc.

The concentration fluctuations are advected by the random
velocities,

∂t c̄ = χ∇2c̄

∂t (δc) = −v ·∇c̄ + χ∇2δc + ∇ ·
(√

2χc̄Wc

)
ρ∂tv + ∇π = η∇2v − βρ (δc) g +

√
2ηkBT ∇ ·W ,

where β is the solutal expansion coefficient. This system of SPDEs
can easily be solved numerically once we take the overdamped limit.

Note that here χ is the deterministic (Fickian) diffusion coefficient
which is larger than the bare χ0.
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Giant Fluctuations

Back of the Envelope

The coupled linearized velocity-concentration system in one
dimension:

vt = νvxx +
√

2ρ−1νWx

ct = χcxx − v c̄x ,

where c̄x is the imposed background concentration gradient.
The linearized system can be easily solved in Fourier space to give a
power-law divergence for the spectrum of the concentration
fluctuations as a function of wavenumber k,

〈ĉ ĉ?〉 = ρ
kBT

χ(χ+ ν)k4
(c̄x )2 ≈ kBT

χηk4
(c̄x )2 for large Sc.

Concentration fluctuations become long-ranged and are enhanced
as the square of the gradient, to values much larger than equilibrium
fluctuations.
In real life the divergence is suppressed by surface tension, gravity,
or boundaries (usually in that order).
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Giant Fluctuations

Simulation versus Theory/Experiment

1 Simulations have the following advantages over analytical theory:

1 Numerical linearization around arbitrary time-dependent
macroscopic states including nonlinearities (e.g., chemistry).

2 Nontrivial boundary conditions can be accounted for relatively easily.

2 Simulations have the following advantages over experiments:

1 One can easily turn different effects/terms on and off to understand
what physics is important.

2 No measurement noise or contamination, but still includes thermal
fluctuations.

3 Disadvantages of simulations include:

1 Fluctuations imply statistical noise, so long runs needed to compute
averages (Monte Carlo).

2 Cannot easily handle time and length scale separation.
3 Development of computer codes is like developing a new experimental

apparatus; it takes time!

A. Donev (CIMS) Giant Fluct 5/2015 13 / 36



Giant Fluctuations GRADFLEX Transient

GRADFLEX transient

1 We numerically solve the equations

ρ∂tv + ∇π =η∇2v + ∇ ·
(√

2ηkBT0 W
)

(4)

∇ · v =0

∂tc + v ·∇c =D∇ · (∇c + c (1− c) ST∇T ) (5)

∂tT + v ·∇T =κ∇2T , (6)

2 Our numerical methods perform numerical linearization by solving
the fully nonlinear equations with weak noise.

3 In the linearized regime no difference between 2D and 3D so we
sometimes solve 2D equations to speed up computations.

4 Numerically we separately solve (4,5) for concentration
(overdamped), and we separately solve (4,6) for temperature (inertial)
[1].
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Giant Fluctuations GRADFLEX Transient

Overdamped Temporal Integrator

The limiting dynamics can be efficiently simulated using the following
predictor-corrector algorithm (implemented on GPUs):

1 Generate a random advection velocity by solving steady Stokes with
random forcing,

∇πn+ 1
2 = ν

(
∇2vn

)
+ ∆t−

1
2∇ ·

(√
2νρ−1 kBT Wn

)
− ρβcng

∇ · vn = 0.

using a staggered finite-volume fluctuating hydrodynamics solver.

2 Do a predictor advection-diffusion solve for concentration,

c̃n+1 − cn

∆t
= −vn ·∇cn + χ0∇2

(
cn + c̃n+1

2

)
.
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Giant Fluctuations GRADFLEX Transient

contd.

1 Solve a corrector steady Stokes system for velocity,

∇πn+ 1
2 = η

(
∇2vn+ 1

2

)
+ ∇ ·

(√
2η kBT

∆t∆V
Wn

)
− ρβ

(
cn + c̃n+1

2

)
g

∇ · vn+ 1
2 = 0.

2 Take a corrector step for concentration,

cn+1 − cn

∆t
= −vn+ 1

2 ·∇
(
cn + c̃n+1

2

)
+ χ0∇2

(
cn + cn+1

2

)
.

This overdamped integrator provides a speedup of O (Sc) over
direct integration of the original inertial equations.

A. Donev (CIMS) Giant Fluct 5/2015 16 / 36



Giant Fluctuations GRADFLEX Transient

Comparison to GRADFLEX transient
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Figure : Qualitative theory [2]: S(k, t) ∝ [1− exp(−2Dk2t)]S(k,∞)
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Giant Fluctuations Slowdown due to confinement

Relaxation times in confinement

Figure : Dimensionless effective decay times τ̃ as a function of dimensionless
wave number q̃ [3]. Filled red markers are experimental data, open blue are for
calculations based on the FHD model, and open-dotted black are from numerical
simulations.
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Giant Fluctuations Slowdown due to confinement

Where does overdamped apply?

Figure : The overdamped limit is only good for wavenumbers above 50cm−1. At
even larger scales fluid inertia cannot be neglected when there is gravity
present.
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Giant Fluctuations Slowdown due to confinement

Propagative Modes

Figure : (Color online) Propagative modes (gravity waves) [1] appear in the
inertial equations (dotted), but not overdamped (dashed).
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Giant Fluctuations Slowdown due to confinement

Complex Fluids

We have generalized the models and numerical codes to include more
complex fluids:

Multispecies mixtures with complete transport including thermo
and barodiffusion and boundary conditions and gravity [4].
We have simulated the development of gravity-driven diffusive
instabilities and compared to experiments.

Chemically-reacting mixtures [5]. We have studied giant
fluctuations in reactive mixtures and found that the nonlinearity of
the base (macroscopic) state is crucial and not yet captured in theory.

Multiphase liquids including liquid-vapor coexistence [6]. We have
simulated capillary waves, spinodal decomposition, condensation, and
the piston effect.

Ionic mixtures including electrostatic effects at length scales
comparable to the Debye length (in preparation).
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Multispecies Mixtures

Chemically-Reactive Mixtures

The species density equations for a mixture of NS species are given by

∂

∂t
(ρs) +∇ · (ρsv + F) = msΩs , (s = 1, . . .NS) (7)

Due to mass conservation ρ =
∑

s ρs follows the continuity equation,

∂

∂t
ρ+∇ · (ρv) = 0. (8)

The mass fluxes take the form, excluding barodiffusion and
thermodiffusion,

F = ρW

[
χΓ∇x +

√
2

n
χ

1
2WF (r, t)

]
,

where n is the number density, xs is the mole fraction of species s,
and W = Diag {ws = ρs/ρ} contains the mass fractions.
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Multispecies Mixtures

Multispecies Mass Diffusion

Γ is a matrix of thermodynamic factors,

Γ = I +
(
X− xxT

)(∂2gex
∂x2

)
,

where gex (x,T ,P) is the normalized excess Gibbs energy density
per particle.

χ is an SPD diffusion tensor that can be related to the
Maxwell-Stefan diffusion coefficients and Green-Kubo type
formulas.

We, however, do not know values of these for even a single ternary
mixture!
We have studied ideal mixtures: hard-sphere gas mixtures [7] and
dilute solutions of salt+sugar in water [4].
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Multispecies Mixtures

Chemical Reactions

Consider a system with NR elementary reactions with reaction r

Rr :

NS∑
s=1

ν+
srMs �

NS∑
s=1

ν−srMs

The stoichiometric coefficients are νsr = ν−sr − ν+
sr and mass

conservation requires that
∑

s νsrmr = 0.

Define the dimensionless chemical affinity

Ar =
∑

s

ν+
sr µ̂s −

∑
s

ν−sr µ̂s ,

where µ̂s = msµs/kBT is the dimensionless chemical potential per
particle.

Also define the thermodynamic driving force

Âr = exp

(∑
s

ν+
sr µ̂s

)
− exp

(∑
s

ν−sr µ̂s

)
=
∏

s

eν
+
sr µ̂s −

∏
s

eν
−
sr µ̂s
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Multispecies Mixtures

Chemical Langevin Equation

The mass production due to chemistry can be approximated by the
chemical Langevin equation (CLE) [5]:

Ωs =
∑

r

νsr

(
P

τrkBT

)
Âr +

∑
r

νsr

(
P

τrkBT

∏
s

eν
+
sr µ̂s

) 1
2

Z (r, t)

(9)

The CLE follows from a truncation of the Kramers-Moyal expansion
at second order.
No true thermodynamic equilibrium since it assumes one-way
reactions.

The CLE is not time-reversible (obeys detailed balance) at
thermodynamic equilibrium wrt to the Einstein distribution.
Proper description of chemical reactions requires the use of SDEs
driven by Poisson noise (not Gaussian).
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Multispecies Mixtures

Nonlinear Chemical Networks

We have studied the Baras-Pearson-Mansour (BPM) model
M = (U,V ,W ,S ,Uf ,Vf ),

R1 : U + W � V + W

R2 : V + V � W + S

R3 : V � S (10)

R4 : U � Uf

R5 : V � Vf

This system can exhibit limit cycles, bimodal states (bistability), and
possibly other nonlinear behavior.
In principle this system can be simulated using particle methods!
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Multispecies Mixtures

Turing-like Patterns

Fluctuations change the dynamics qualitatively in spatially-extended
reactive systems! How do we simulate this?
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Multiphase Liquids

Multiphase Systems: Liquid-Vapor

We will use a diffusive-interface model for describing interfaces
between two distinct phases such as liquid and vapor of a single
species.

Coarse-grained free energy follows the usual square-gradient surface
tension model

F (ρ(r),∇ρ(r),T (r)) =

∫
dr

(
f (ρ(r),T (r)) +

1

2
κ |∇ρ(r)|2

)
(11)

The local free energy density f (ρ(r),T (r)) includes the hard-core
repulsions as well as the short-range attractions.

Assume a van der Waals loop for the equation of state,

P (ρ,T ) =
nkBT

1− b′n
− a′n2, (12)

f = nkBT ln

[
ρ

1− b′n

]
− a′n2.
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Multiphase Liquids

Fluctuating Hydrodynamics

∂tρ+∇ · (ρv) = 0 (13)

∂t (ρv) +∇ ·
(
ρvvT

)
+∇ ·Π = ∇ · (σ + Σ) (14)

∂t (ρE ) +∇ · (ρEv + Π · v) = ∇ · (ψ + Ψ) +∇ · ((σ + Σ) · v) , (15)

where the momentum density is g = ρv and
the total local energy density is ρE = 1

2ρv
2 + ρe.
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Multiphase Liquids

Momentum Fluxes

The reversible contribution to the stress tensor is [6]

Π = PI−
[(
κρ∇2ρ+

1

2
κ |∇ρ|2

)
I

]
− (κ∇ρ⊗∇ρ) + cross term?

Irreversible contribution to the stress is the viscous stress tensor

σ = η
(
∇v + (∇v)T

)
+

(
ζ − 2

3
η

)
(∇ · v) I (16)

Stochastic stress tensor obeys fluctuation-dissipation balance

Σ =
√

2ηkBT W̃ +

(√
ζkBT

3
−
√

2ηkBT

3

)
Tr
(
W̃
)

I, (17)

where W̃ = (W + WT )/
√

2 is a symmetric white-noise tensor field.
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Multiphase Liquids

Capillary Waves

Variance of height fluctuations versus wavenumber comparing 2D
simulations (red circles) and capillary wave theory (CWT) (black solid
line).
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Multiphase Liquids

Spinodal Decomposition

Spinodal decomposition in a near-critical Argon system at ρ = 0.416 g/cc,
T = 145.85 K leading to a bicontinuous pattern.

A. Donev (CIMS) Giant Fluct 5/2015 34 / 36



Multiphase Liquids

Condensation

Liquid-vapor spinodal decomposition in a near-critical van der Waals
Argon system at ρ = 0.36 g/cc, T = 145.85 K leading to droplets
forming in a majority vapor phase.
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Multiphase Liquids
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