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Inertial Stochastic Immersed Boundary Method

Fluid-Bead Coupling

We want to construct a bidirectional coupling between a fluctuating
fluid and a bead, which we can think of a small sphere of radius a
with position q(t) and velocity u = dq/dt.

Macroscopically, the coupling between flow and suspended structures
relies on:

No-stick boundary condition vrel = 0 at the surface of the bead.
Force on the bead is the integral of the stress tensor over the bead
surface.

The above two conditions are questionable at nanoscales, but even
worse, they are very hard to implement numerically in an efficient and
stable manner.

But the classical models do provide inspiration for what is physically
reasonable, even if we do not take them literally.
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Inertial Stochastic Immersed Boundary Method

Faxen’s Theorem

Consider the problem of a hard sphere of radius a immersed in an
incompressible fluid:

ρDtv = η∇2v −∇π with ∇ · v = 0 outside ‖r − q(t)‖ > a

v (r, t) = u(t) on the surface ‖r − q(t)‖ = a

v (r, t) = v∞ (r, t) far away ‖r − q(t)‖ � a,

where v∞ (r, t) is often said to be the “fluid flow in the absence of the
particle”, though seems better to call it the “flow at infinity”.

Faxen derived that for sufficiently small beads, in some appropriate
limit (zero Reynolds number), the force on the bead is:∮

S

[
−πI + η∇v

]
· ndS = −6πaη

[
u− v∞ (q, t)− a2

6

(
∇2v∞

)
q(t)

]
.

This is generalization of Stokes’s friction law, but note that
corrections including inertial effects have since been computed.
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Inertial Stochastic Immersed Boundary Method

Induced Force Method

An alternative formulation (Bedeaux and Mazur) includes fluid inside
the bead but adds an induced force density in the fluid equations as
an additional Lagrange multiplier:

ρDtv = η∇2v −∇π +
√

2ηkBT (∇ ·W) + f ind with ∇ · v = 0

v (r, t) = u(t) and π (r, t) = 0 inside ‖r − q(t)‖ ≤ a

f ind (r, t) = 0 outside ‖r − q(t)‖ � a

Think of the Immersed Boundary method for surfaces, where singular
surface force densities are turned into volume force densities.

The force exerted by the fluid on the bead is:

Ff = −
∫

r
f ind (r, t) dr = Fd + Fs ,

where we have tried to separate the (dissipative) viscous friction
force Fd from the (stochastic) random force Fs due to thermal
fluctuations in the fluid.
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Inertial Stochastic Immersed Boundary Method

Fluid Equations

We do not care about the fine details of the flow around a bead, which
is nothing like a hard sphere with stick boundaries in reality anyway.

Therefore, let us take an Immersed Boundary approach and assume

f ind = −Ff δ∆a (q− r) ,

where δ∆a is an approximate delta function with support of size ∆a
(integrates to unity).

This gives the fluid equations, assuming incompressibility:

ρDtv = η∇2v −∇π +
√

2ηkBT (∇ ·W)− (Fd + Fs) δ∆a (q− r) .

One should of course use the full compressible fluctuating equations
for better physical fidelity, but that seems much harder.
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Inertial Stochastic Immersed Boundary Method

Bead Equations

The motion of the bead, whose position is q(t) is modeled using a
Langevin equation:

Mu̇ = Mq̈ = Fext + Fd + Fs

where Fext = −∇U(q) is usually a conservative force, but here it is
some unspecified external force.

Note that the total momentum

p = Mu +

∫
r
ρv (r, t) dr

is conserved when Fext = 0.

An obvious choice is to assume a Stokes friction law for the
dissipative coupling,

Fd = −γ [u− v (q, t)] where γ ≈ 6πaη

which is like Faxen’s law except that v is used instead of v∞, which I
assume is not known.
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Inertial Stochastic Immersed Boundary Method

Dissipative Coupling

Make the dissipative force more general but still linear,

Fd = −γ
[

u−
∫

K (q− r) v (r, t) dr

]
.

In order to also conserve the energy

E =
M

2
u2 +

∫
r

ρ

2
v2 (r, t) dr + U(q),

it can easily be shown that K ≡ δ∆a.

More generally, the fluid-structure coupling operator must be the
adjoint of the structure-fluid coupling operator. See preprint [1]:
“Stochastic Eulerian Lagrangian Methods for Fluid Structure
Interactions with Thermal Fluctuations”, Paul J. Atzberger, 2010,
http://arxiv.org/abs/1009.5648
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Inertial Stochastic Immersed Boundary Method

Stochastic Force

For every dissipative force there should be a corresponding stochastic
forcing, to ensure fluctuation-dissipation balance [2, 1].

For the viscous dissipation this is the stochastic stress term√
2ηkBT (∇ ·W).

It is known from Langevin’s work that for the viscous damping −γu
one needs a stochastic force

Fs =
√

2γkBT W̃ ,

where W̃(t) is white-noise (derivative of Brownian motion).

More generally, we want the equilibrium distribution of the
dynamics to be the Gibbs distribution,

Ψ (u, v) = Z−1 exp

(
− E

kBT

)
.
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Inertial Stochastic Immersed Boundary Method

Fluid-Bead Equations

We finally get the Inertial Stochastic Immersed Boundary
Method (ISIBM) equations (set kBT = 1)

ρDtv = η∇2v −∇π +
√

2η (∇ ·W)−
(

Fd +
√

2γW̃
)
δ∆a (q− r) .

M
du

dt
= M

d2q

dt2
= Fext + Fd +

√
2γW̃

Fd = −γ
[

u−
∫
δ∆a (q− r) v (r, t) dr

]
Dunweg and Ladd [3] (arXiv:0803.2826v2), and also Atzberger [1],
have shown that this system satisfies fluctuation-dissipation balance,
that is, the Gibbs distribution is the stationary solution of the
Fokker-Planck equation corresponding to the linearized version of the
fluid-bead equations.

One must include the stochastic forcing in the fluid to get the
Gibbs-Boltzmann distribution.
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Inertial Stochastic Immersed Boundary Method

Friction Coefficient

Consider applying a constant force Fext on the bead and measuring its
terminal velocity u0, ignoring fluctuations:

Fext = −Fd = γ

[
u0 −

∫
δ∆a (q− r) v (r, t) dr

]
= γ [u0 − uf ]

The fluid equation is now simply the Stokes equation

0 = η∇2v −∇π + Fextδ∆a (q− r) ⇒

v(r, t) =

[∫
dr′
[
G
(
r, r′
)]
δ∆a

(
q− r′

)]
Fext ,

where G is the Green’s function for the Stokes equation (Oseen
tensor).

Translational invariance (ignoring boundaries) gives:

uf =

[∫
dr′
∫

dr
[
G
(
r − r′

)]
δ∆a

(
r′
)
δ∆a (r)

]
Fext
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Inertial Stochastic Immersed Boundary Method

Friction Renormalization

Because of spherical symmetry of δ∆a, the double integral is a
multiple of the identity matrix,

uf =
θ1

η (∆a)
Fext

where θ1 ∼ 1 is a constant that comes out of the integration.
Taking γ = ηaθ2, where θ2 ∼ 1 is some constant, we get the
renormalization relation:

Fext = ηaθ2

[
u0 −

θ1

η (∆a)
Fext

]
⇒

Fext =
θ2

1 + aθ2θ1/ (∆a)
(ηau0)

In practice we want to adjust the width of the approximate delta
function but keep the effective hydrodynamic radius a constant:

Fext = 6π (ηau0) ⇒ θ2 =
6π

1− 6πθ1

(
a

∆a

) =
6π

1− g−1
(

a
∆a

)
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Non-Inertial Limits of Bead-Fluid Coupling

Inertial Stochastic Immersed Boundary review

Atzberger [1] explains why it is better to use not a velocity equation,
but rather the total momentum of the fluid-bead system:

p = ρv + Mδ∆a (q− r) u ⇒ (classical Calculus is OK)

pt = ρvt + Mδ∆a (q− r)
du

dt
+ M [∇qδ (q− r) · u] u.

We can rewrite the last term as a divergence of a Kirkwood stress
tensor, to get the equations in conservation form:

pt =η∇2v −∇ ·
(
πI + ρvvT

)
+
√

2ηkBT (∇ ·W)

+ Fextδ∆a (q− r)−∇ ·
[(
MuuT

)
δ∆a (q− r)

]
M

du

dt
=M

d2q

dt2
= Fext + Fd +

√
2γW̃

Fd =− γ
[

u−
∫
δ∆a (q− r) v (r, t) dr

]
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Non-Inertial Limits of Bead-Fluid Coupling

The Stochastic Immersed Boundary Method

Atzberger [1] has studied several limits of the ISBM dynamics,
focusing on the limit M → 0 first (p ≡ v), and then γ →∞.

With this order of limits, the ISIBM formulation essentially reduces to
the Stochastic Immersed Boundary method [4]

Dtv =η∇2v −∇π +
√

2ηkBT (∇ ·W) + Fextδ∆a (q− r)

−∇ [δ∆a (q− r) kBT ]

dq

dt
=u =

∫
δ∆a (q− r) v (r, t) dr

Note that there is an additional term (shown in red) coming from the
kinetic energy of the bead ∼ kBT .

Note the important difference that now the bead is advected by the
fluid velocity, as in the classical Immersed Boundary method.

There is no inertia and the average speed of the bead
〈uuT 〉 = (kBT/M) I is not reproduced, but the tail of the VACF is [5]!
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Non-Inertial Limits of Bead-Fluid Coupling

Brownian Dynamics Limit

Further also taking the limit η →∞, that is, the Stokes limit in which
the fluid dynamics is much faster than the dynamics of the bead:

v(r, t) =

[∫
dr′
[
G
(
r − r′

)]
δ∆a

(
q− r′

)]
· F

F =
√

2ηkBT (∇ ·W) + Fextδ∆a (q− r)

The fluid dynamics is now implicit, and for the beads we get the
traditional Brownian Dynamics:

u =
dq

dt
= HFext +

√
2kBT H1/2W̃+ (∇qH) kBT

This cannot capture the tails of the VACF of the bead, since the fluid
dynamics is not resolved!
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Non-Inertial Limits of Bead-Fluid Coupling

Brownian Dynamics

Here the hydrodynamic coupling is captured by the operator

H =

∫
dr′
∫

dr
[
G
(
r − r′

)]
δ∆a

(
q− r′

)
δ∆a (q− r) .

The hard part, see papers by Atzberger [6], is to not only do the fluid
solve to compute HFext but also compute the stochastic forcing
H1/2W̃ (he proposed using stochastic multigrid ala Goodman and
Sokal).

Additional care must be payed for (semi)discrete formulations.

In standard Brownian dynamics kBT H is called the diffusion tensor,
and is usually modeled using some analytical approximations (difficult
in complex geometries), e.g., an Oseen tensor with some wall
corrections.
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Inertial Limits of Bead-Fluid Coupling

Inertial Stochastic Immersed Boundary review

Recall the full ISIBM conservative formulation:

pt =η∇2v −∇ ·
(
πI + ρvvT

)
+
√

2ηkBT (∇ ·W)

+ Fextδ∆a (q− r)−∇ ·
[(
MuuT

)
δ∆a (q− r)

]
M

du

dt
=M

d2q

dt2
= Fext + Fd +

√
2γW̃

Fd =− γ
[

u−
∫
δ∆a (q− r) v (r, t) dr

]
p =ρv + Mδ∆a (q− r) u

The limit γ →∞ but with finite M and η is a sort of“inertial”version
of the IBM method, which is of interest but still somewhat elusive.
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Inertial Limits of Bead-Fluid Coupling

Direct Forcing Method

It turns out this limit has sort of been implemented in the
deterministic sense by Uhlmann and is called the direct forcing
method [7].

My collaborator Rafael D. Buscallioni and his student Florencio
Balboa (visiting Courant in the spring!) have implemented the direct
forcing method for beads immersed in an isothermal compressible
fluid solver.

The published formulations seem to all be semi-discrete in time and I
could not find a purely continuum formulation.

A quick derivation however shows that the algorithm by Uhlmann is a
projection algorithm for solving the constrained evolution equations
of what I will call the overdamped ISIBM limit.
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Inertial Limits of Bead-Fluid Coupling

Overdamped ISIBM equations

Not attempting to do the stochastic terms rigorously, the
overdamped ISIBM equations are:

pt =η∇2v −∇ ·
(
πI + ρvvT

)
+
√

2ηkBT (∇ ·W)

+ Fextδ∆a (q− r)−∇ ·
[(
muuT

)
δ∆a (q− r)

]
+ (?)

m
du

dt
=Fext + λ

subject to u =
dq

dt
=

∫
δ∆a (q− r) v (r, t) dr.

The force λ is a Lagrange multiplier that enforces the constraint that
the bead is advected by the interpolated fluid velocity (the
integral of the “induced force”).

I purposely changed notation for the mass of the bead from M to m...
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Inertial Limits of Bead-Fluid Coupling

Excess mass

The equations are written in terms of the momentum field p:

p = ρv + mδ∆a (q− r) u.

In practice one uses v as a variable instead. The bead velocity u is no
longer really an independent variable, and it can formally be
eliminated from the continuum description.

The mass of the bead should be taken to be the excess mass of the
bead over the “excluded” fluid:

m = M −∆m = M −∆V

∫
δ∆a (q− r) ρ (r, t) dr = M − ρ∆V ,

where ∆V is a parameter that represents the effective volume of
the bead,

∆V =

[∫
δ2

∆a (q− r) dr

]−1

.
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Future Directions

Upcoming Implementations

The ISBM form of coupling has been implemented and is used widely
in Lattice-Boltzmann codes, which solve the isothermal compressible
equations of fluctuating hydrodynamics (density fluctuates as well).

Dunweg and Ladd [3] report that a three point discrete delta
(interpolation) function provides a reasonably translationally-invariant
g ≈ 1.2± 0.03, but the four-point is even better, g ≈ 1.5± 0.01.

I have only recently begun working on developing numerical schemes
for these types of problems:

Paul Atzberger is working on exponential temporal stochastic
integrators in existing SIBM code: rigorous solution to carefully study
the model and its limits.
Rafael D. Buscallioni and his student have a direct forcing method
with a compressible fluid solver (almost fluctuating).
Some of us are working on real-space incompressible fluctuating
schemes that satisfy fluctuation-dissipation balance [2], which will be
used for the fluid solver in the future.
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Future Directions

Open Questions

Does the proposed ISIBM formulation have the right physics in the
deterministic setting, for example, does it reproduce terms in
generalizations of Faxen’s theorem?

How should compressibility (sound effects) and temperature be
included in the coupling (e.g., ultrasound or thermal conduction in
nano-colloidal suspensions)?

What do the various formulations give for the VACF of the bead
compared to the particle-continuum hybrid (the gold standard)?

The equipartition theorem C (0) = kBT/M should be reproduced
(assuming discrete FDB). But...

Where does the 2/3 due to missing sound come in for incompressible
formulations?
What happens as γ increases? Can we take the limit γ →∞ directly?
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Future Directions
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