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Reaction-Diffusion Systems

Chemical Reactions in Solution

Many chemical reactions occur in a viscous solvent and are
diffusion-limited, making a mean-field or “well-mixed” approximation
inappropriate.

Classical examples where the Law of Mass Action (LMA)
reaction-diffusion equations fails spectacularly is annihilation
A + B → 0
But even in A + B � C there are power-law tail signatures in the
dynamics even at chemical equilibrium [1].

Spatial fluctuations play a key role in diffusion-limited reactions
and spatial diffusion must be accounted for;
this is different (in addition to) fluctuations coming from there being
very few reactants of certain species.

Primarily interested in the case when fluctuations are weak, i.e., lots
of molecules are involved, but fluctuations still make a difference.
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Reaction-Diffusion Systems

Simulation Approaches

The traditional approach to simulation of reaction-diffusion problems
in this community is to solve the Reaction-Diffusion Master
Equation (RDME), such as the next subvolume method.

Diffusion is modeled by a jump process instead of a continuous random
walk or fluctuating Fick’s law (see below).
The results depend strongly on the cell size and are thus not
grid-independent (hard to fix!).

At a basic level one can use particle-based reaction-diffusion models:
Particles are modeled as spheres that diffuse as independent
Brownian walkers.

In the Smoluchowski model particles react upon touching; simulated
by the First Passage Kinetic Monte Carlo method (FPKMC) [2],
called eGFRD in the biochemical community.
In the Doi model particles react with a certain binary reaction rate (as
a Poisson process) while they overlap.
We are developing a novel Isotropic RDME (IRDME) method but see
also Sam Isaacson’s Convergent RDME (CRDME).
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Reaction-Diffusion Systems

Diffusion in Liquids

I will first try to convince you that a much better way to model
diffusion at mesoscopic levels than jumping is fluctuating
hydrodynamics.

I will then try to convince you that diffusion in liquid solutions is
strongly affected by hydrodynamic interactions.

I will lastly show you a framework that includes complete
hydrodynamic transport including cross-diffusion effects and
fluctuations.

But I will try to also indicate a number of problems that are
unresolved.

I will operate under the assumption that you believe nonequilibrium
statistical mechanics is a useful tool in chemical reaction
modeling, but will not try to convince you it is so, especially since I
have essentially no experience in biological systems.
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Diffusion via Fluctuating Hydrodynamics

Uncorrelated Brownian Walkers

Fluctuating hydrodynamics is a coarse-grained description of mass,
momentum and energy transport in fluids (gases and liquids).

Consider diffusion of colloidal particles immersed in a viscous liquid;
assume the particles are uncorrelated Brownian walkers.

The positions of the N particles Q (t) = {q1 (t) , . . . ,qN (t)} follow
the Ito SDEs

dQ = (2χ)
1
2 dB, (1)

where B(t) is a collection of independent Brownian motions.

We are interested in describing a spatially coarse-grained fluctuating
empirical concentration field,

c (r, t) =
N∑
i=1

δ (qi (t)− r) . (2)
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Diffusion via Fluctuating Hydrodynamics

Fluctuating Diffusion Equation

Dean [3] obtained an SPDE for c (r, t) =
∑
δ (qi (t)− r), using

straightforward Ito calculus and properties of the Dirac delta function,

∂tc = χ∇2c + ∇ ·
(√

2χcWc

)
, (3)

where Wc (r, t) denotes a spatio-temporal white-noise vector field.

This is a typical example of a fluctuating hydrodynamics equation,
which is deceptively simply, yet extremely subtle from both a physical
and mathematical perspective.

The term
√

2χcWc can be thought of as a stochastic mass flux, in
addition to the “deterministic” Fickian flux χ∇c.

One can develop CFD methods to solve this sort of SPDE [4], with
lots of caveats...
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Diffusion via Fluctuating Hydrodynamics

Giant Nonequilibrium Fluctuations

Experimental results by A. Vailati et al. from a microgravity environment
[5] showing giant fluctuations in the concentration of polystyrene in
toluene in space (box scale is 5mm on the side, 1mm thick).
Fluctuations become macrosopically large at macroscopic scales!
These come because of hydrodynamic effects on diffusion in liquids.
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Diffusion via Fluctuating Hydrodynamics

Brownian Dynamics with Hydrodynamics

The Ito equations of Brownian Dynamics (BD) for the (correlated)
positions of the N particles Q (t) = {q1 (t) , . . . ,qN (t)} are

dQ = −M (∂QU) dt + (2kBT M)
1
2 dB + kBT (∂Q ·M) dt, (4)

where B(t) is a collection of independent Brownian motions, U (Q) is
a conservative interaction potential.

Here M (Q) � 0 is a symmetric positive semidefinite mobility matrix
for the collection of particles, and introduces correlations among the
walkers.

The Fokker-Planck equation (FPE) for the probability density P (Q, t)
corresponding to (4) is

∂P

∂t
=

∂

∂Q
·
{

M

[
∂U

∂Q
P + (kBT )

∂P

∂Q

]}
, (5)

and is in detailed-balance (i.e., is time reversible) with respect to the
Gibbs-Boltzmann distribution ∼ exp (−U(Q)/kBT ).
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Diffusion via Fluctuating Hydrodynamics

Hydrodynamic Correlations

Let’s start from the (low-density) Rotne-Prager-Yamakawa
approximation Mij ≡Mij

(
r = qi − qj

)
, for r > 2σ,

Mij (r) =
R (r)

kBT
=

χ

kBT

[(
3σ

4r
+
σ3

2r3

)
I +

(
3σ

4r
− 3σ3

2r3

)
r ⊗ r

r2

]
.

(6)

Here σ is the radius of the colloidal particles and the diffusion
coefficient χ follows the Stokes-Einstein formula

χ =
kBT

6πησ
.

We can use Ito calculus to obtain an equation for the empirical or
instantaneous concentration similar to what Dean did for
uncorrelated walkers, for non-interacting particles (ideal gas, U = 0).
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Diffusion via Fluctuating Hydrodynamics

Fluctuating Fick’s Law for Liquids

We get the stochastic advection-diffusion equation [6]

∂tc = ∇ · [χ∇c]−w ·∇c, (7)

where the diffusion tensor χ = R (r, r) and the random velocity
field w (r, t) has covariance

〈w (r, t)⊗w
(
r′, t ′

)
〉 = 2R

(
r − r′

)
δ
(
t − t ′

)
. (8)

For uncorrelated walkers, Mij = δij (kBT )−1 χI, the noise is very
different, ∇ ·

(√
2χcWc

)
.

In both cases the mean obeys Fick’s law but the fluctuations are
completely different.
The correct fluctuating Fick’s law in liquids is (7) and not (3)!
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Complex Fluid Mixtures

Fluctuating Hydrodynamics

Giant fluctuations can be modeled by including momentum transport
(velocity fluctuations) in fluctuating hydrodynamics:

∂tρ+∇ · (ρv) = 0 (9)

∂t (ρv) +∇ ·
(
ρvvT

)
+∇P = ∇ · (σ + Σ) (10)

∂t (ρE ) +∇ · (ρEv + Π · v) = ∇ · (ψ + Ψ) +∇ · ((σ + Σ) · v) , (11)

where the total local energy density is ρE = 1
2ρv2 + ρe.
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Complex Fluid Mixtures

Momentum Fluxes

Irreversible contribution to the stress is the viscous stress tensor

σ = η
(
∇v + (∇v)T

)
+

(
ζ − 2

3
η

)
(∇ · v) I (12)

Stochastic stress tensor obeys fluctuation-dissipation balance

Σ =
√

2ηkBT W̃ +

(√
ζkBT

3
−
√

2ηkBT

3

)
Tr
(
W̃
)

I, (13)

where W̃ = (W + WT )/
√

2 is a symmetric white-noise tensor field.
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Complex Fluid Mixtures

Chemically-Reactive Mixtures

The species density equations for a mixture of NS species are given by

∂

∂t
(ρs) +∇ · (ρsv + F) = msΩs , (s = 1, . . .NS) (14)

The diffusive fluxes take the form, excluding barodiffusion and
thermodiffusion, and assuming an ideal mixture,

F = ρW

[
χ∇x +

√
2

n
χ

1
2WF (r, t)

]
,

where n is the number density, xs is the mole fraction of species s,
and W = Diag {ws = ρs/ρ} contains the mass fractions.

χ is an SPD diffusion tensor that can be related to the
Maxwell-Stefan diffusion coefficients and Green-Kubo type
formulas.
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Complex Fluid Mixtures

Thermodynamics of Reactions

Consider a system with NR elementary reactions with reaction r

Rr :

NS∑
s=1

ν+
srMs �

NS∑
s=1

ν−srMs

Stoichiometric coefficients νsr = ν−sr − ν+
sr , where

∑
s νsrmr = 0.

Define the dimensionless chemical affinity

Ar =
∑
s

ν+
sr µ̂s −

∑
s

ν−sr µ̂s ,

where µ̂s = msµs/kBT is the dimensionless chemical potential per
particle.

Also define the thermodynamic driving force

Âr = exp

(∑
s

ν+
sr µ̂s

)
− exp

(∑
s

ν−sr µ̂s

)
=
∏
s

eν
+
sr µ̂s −

∏
s

eν
−
sr µ̂s
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Complex Fluid Mixtures

Fluctuating Reaction-Diffusion

The mass production due to chemistry can be modeled using the
Chemical Langevin Equation (CLE) [7]:

Ωs =
∑
r

νsr

(
P

τrkBT

)
Âr (deterministic LMA) (15)

+
∑
r

νsr

(
P

τrkBT

∏
s

eν
+
sr µ̂s

) 1
2

Z (r, t) (CLE)

The CLE follows from a truncation of the Kramers-Moyal expansion
at second order. No true thermodynamic equilibrium:

Assumes one-way reactions which violates detailed balance.
the equilibrium distribution is not the Einstein distribution exp (S/kB).

There is no S(P)DE that can correctly describe both the short-time
(central limit theorem) and long-time (large deviation functional)
behavior of the master equation. But tau leaping can and should be
used with time splitting.
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Complex Fluid Mixtures

Nonlinear Chemical Networks

We have studied the Baras-Pearson-Mansour (BPM) model
M = (U,V ,W ,S ,Uf ,Vf ),

R1 : U + W � V + W

R2 : V + V � W + S

R3 : V � S (16)

R4 : U � Uf

R5 : V � Vf

This system can exhibit limit cycles, bimodal states (bistability), and
possibly other nonlinear behavior.
In principle this system can be simulated using particle methods!
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Complex Fluid Mixtures

Turing-like Patterns

Development of an instability in the BPM model with fluctuations (top)
and without (bottom) with complete compressible hydrodynamics (not just
reaction-diffusion).
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