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Augmented Langevin Equations

Coarse-Graining Equilibrium Ensembles

At thermodynamic equilibrium, start from microscopic
configuration and then define coarse-grained degrees of freedom
x = X (z) to get a coarse-grained“Hamiltonian”or free energy

H (x) = − (kBT ) ln

∫
z
δ [X (z)− x] ceq(z)dz,

where ceq(z)dz is the equilibrium measure (ensemble) for the
microscopic dynamics.

The equilibrium distribution for the coarse variables is the Gibbs
distribution (similarly, Einstein distribution for closed system)

Peq (x) = Z−1 exp

[
−H (x)

kBT

]
, (1)

and any reasonable coarse-grained dynamics must preserve this
distribution as an invariant measure.
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Augmented Langevin Equations

Coarse-Graining Equilibrium Dynamics

Important: Since z is finite-dimensional, assume X is also
finite-dimensional.

A reasonable postulate for the coarse-grained dynamics for isothermal
systems is the augmented Ito Langevin equation:

dx

dt
= −N · ∂H

∂x
+ (2kBT )1/2 B ·W(t) + (kBT )

∂

∂x
·N?, (2)

where W(t) is a vector of independent white-noise processes.

The fluctuation-dissipation balance condition is

BB? =
1

2
(N + N?) = M � 0.

In this picture L = 1
2 (N? −N) is the “conservative” part and M is the

“dissipative” part of the dynamics,

dH

dt
=
∂H

∂x
·N · ∂H

∂x
= Re

(
∂H

∂x
·M · ∂H

∂x

)
≤ 0.
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Augmented Langevin Equations

Projection-operator formalism of TCG

This can be justified to some extent via projection operator
formalism(s) and the assumption of separation of time-scales, i.e.,
Markovianity of the CG dynamics (upcoming book on Theory of
Coarse Graining by Pep Español).

The Mori-Zwanzig formalism gives explicit expressions for N (x) as
a sum of a “drift” term, which is the projection of the microscopic
Poisson bracket onto the constrained manifold X (z) = x, and a
“friction” term, which is the integral of the autocorrelation function of
the projected microscopic dynamics (Green-Kubo formulas).

For closed systems with strict energy conservation, see GENERIC
formalism described in Ottinger’s book “Beyond Equilibrium
Thermodynamics”.

The microscopic dynamics is time-reversible at equilibrium with
momentum inversion, and therefore so must be the coarse-grained
dynamics.
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Augmented Langevin Equations

Time reversibility

The coarse-grained variables will transform differently under
time-reversal,

x̃k = εkxk ,

where the parity εk = 1 for positional variables and εk = −1 for
velocity variables.

If the free-energy is time-reversal invariant, H̃ (x̃) = H (x), and the
mobility satisfies the reciprocal relations

Ñkj (x̃) = Nkj [x̃ (x)] = εkεj
[
N?

jk (x)
]
, (3)

then the time-reversed evolution is

d x̃

dt
= −Ñ · ∂H̃

∂x̃
+ (2kBT )1/2 B̃ ·W(t) + (kBT )

∂

∂x̃
· Ñ

?
, (4)

Therefore, the reversed evolution has exactly the same form as the
forward evolution (2), that is, the process is time reversible at
equilibrium (obeys detailed balance w.r.t. to the Gibbs distribution).
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Diffusion without Hydrodynamics

Uncorrelated Brownian Walkers

Fluctuating hydrodynamics (FHD) is a coarse-grained description of
mass, momentum and energy transport in fluids (gases and liquids).

Consider diffusion of colloidal particles immersed in a viscous liquid;
assume the particles are uncorrelated Brownian walkers.

The positions of the N particles Q (t) = {q1 (t) , . . . ,qN (t)} follow
the Ito SDEs

dQ = (2χ)
1
2 dB, (5)

where B(t) is a collection of independent Brownian motions.

We are interested in describing a spatially coarse-grained fluctuating
empirical concentration field,

cξ (r, t) =
N∑
i=1

δσ (qi (t)− r) , (6)

where δσ is a smoothing kernel with support ∼ σ that converges to a
delta function as σ → 0.
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Diffusion without Hydrodynamics

No Coarse Graining ala Dean

Consider first the limit σ → 0, which corresponds to no coarse
graining (no loss of information except particle numbering).

Dean obtained an SPDE for c (r, t) =
∑
δ (qi (t)− r), using

straightforward Ito calculus and formal properties of the Dirac delta
function,

∂tc = χ∇2c + ∇ ·
(√

2χcWc (r, t)
)
, (7)

where Wc (r, t) denotes a spatio-temporal white-noise vector field.

This is a typical example of a fluctuating hydrodynamics equation,
which is deceptively simple, yet extremely subtle from both a physical
and mathematical perspective.

The term
√

2χcWc can be thought of as a stochastic mass flux, in
addition to the “deterministic” dissipative flux χ∇c.
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Diffusion without Hydrodynamics

Formal Langevin SPDEs

This formally looks like a coarse-grained purely dissipative Langevin
equation (products imply a contraction over spatial position)

∂tc = −M [c(·, t)] · δF
δc (·, t)

+ (2kBT M [c(·, t)])
1
2 ·Wc(·, t), (8)

where M [c(·)] is a positive-semidefinite mobility functional defined
by its action on a scalar field f (r),∫

dr′M
[
c(·); r, r′

]
f (r′) ≡ − (kBT )−1 ∇ · (χc(r)∇f (r)) .

Here F is the ideal gas free energy functional (in the Grand
Canonical ensemble with reservoir concentration c0)

F [c (·)] = kBT

∫
c (r) (ln (c (r) /c0)− 1) dr

associated with a corresponding formal Gibbs-Boltzmann
distribution that has no clear mathematical meaning.
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Diffusion without Hydrodynamics

What is it useful for?

∂tc = χ∇2c + ∇ ·
(√

2χcWc

)
(9)

In principle, the Dean equation is not really useful, since it is a
mathematically ill-defined tautology, a mere rewriting of the
original equations for the particles. But...

The ensemble average c̄ = 〈c〉 follows Fick’s law,

∂t c̄ = ∇ · (χ∇c̄) = χ∇2c̄,

which is also the law of large numbers (LLN) in the limit of large
coarse-graining scale.

The central limit theorem describing small Gaussian fluctuations
δc = c − c̄ can be obtained by linearizing,

∂t (δc) = χ∇2 (δc) + ∇ ·
(√

2χc̄Wc

)
.

Note that this equation of linearized fluctuating hydrodynamics is
mathematically well-defined.
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Diffusion without Hydrodynamics

Relation to Large Deviation Theory

Furthermore, and more surprisingly, the Dean equation correctly
predicts the large deviation behavior of the particle model (help from
Eric Vanden-Eijnden, originates with Varadhan).

Define the empirical measure

cN (r, t) =
1

N

N∑
i=1

δ (r − qi (t)) ,

which converges weakly to the solution of the deterministic diffusion
equation c̄ (r, t) (LLN) with initial condition being the initial
probability distribution of particle positions.

For a “reasonable” test function φ(r), the empirical value

φN (t) =
1

N

N∑
i=1

φ (qi (t)) =

∫
dr φ (r) cN (r, t)

converges as N increases to φ̄ =
∫
dr φ (r) c̄ (r, t).
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Diffusion without Hydrodynamics

Relation to Large Deviation Theory

Large Deviation Theory (LDT) tells us that

lim
N→∞

N ln P (φN (t) ≥ a) = inf
c
St [c] = (10)

inf
c

∫
dr c(r, t) (ln (c(r, t)/c̄ (r, t))− 1), (11)

where the infimum is taken over all (reasonable) functions (not
distributions!) that satisfy

∫
dr c(r, t) = 1 and∫

dr φ (r) c (r, t) ≥ a.

The path action functional is formally given by Dean’s dynamics,

ST [c] =
1

4

∫ T

0
dt

∫
dr
(
∂tc − χ∇2c

)
(∇ · c∇)−1 (∂tc − χ∇2c

)
+

∫
dr c(r, 0) (ln (c(r, 0)/c̄ (r, 0))− 1) .
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Diffusion without Hydrodynamics

Why (nonlinear) FHD?

All this suggests the nonlinear FHD is informative and maybe
useful.

In particular, upon spatially discretizing the (formal) SPDE, the
resulting system of SODEs can be seen as a spatial coarse-graining of
the particle system, which has the right properties.

Numerically solving the discretized Dean equation with weak noise
gives results in agreement with all three mathematically well-defined
weak-noise limit theorems: LLN, CLT, and LDT.
No need to perform linearizations manually, or to discretize stochastic
path integrals!

I will show some examples where the nonlinearity gives a known
physical effect, after a suitable smoothing / cutoff in Fourier space
at molecular scales.
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Discrete Fluctuating Hydrodynamics

Coarse Graining Brownian Motion

Consider diffusion of a (nano)colloidal particles in a liquid.
The first step is to define a discrete set of relevant variables, which are
mesoscopic observables that evolve slowly

Classical Mechanics Fluct Hydrodynamics

Brownian Dynamics Fick
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Discrete Fluctuating Hydrodynamics

Spatial Coarse-Graining

The proper way to interpret fluctuating hydrodynamics is via the theory
of coarse-graining (here I follow Pep Español) [1].

Introduce a triangulation and define Petrov-Galerkin finite-element (FE)
functions on this grid such as the “tent” function ψµ (r).
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Discrete Fluctuating Hydrodynamics

Notation

Define an orthogonal set of FE basis functions,

||δµψν || = δµν , (12)

where ||f || ≡
∫
drf (r). Here δµ(r) is a discrete Dirac delta function.

The discrete concentration field cµ at a node µ at position rµ is
defined as

ĉµ(t) =

NB∑
i

δµ(qi (t))

where δµ(r) is a function localized around rµ satisfying∑
µ

Vµδµ(r) = 1 ∀r ⇒
∑
µ

Vµĉµ = NB .

Continuum fields which are interpolated from discrete “fields” denoted
here with bar:

[notation change!] c(r) = ψµ(r)cµ (13)
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Discrete Fluctuating Hydrodynamics

Dissipative Matrix

dc

dt
= −M

∂F

∂c
+ (2kBT )1/2 M1/2W(t) + (kBT )

∂

∂x
·M (14)

Dissipative matrix in TCG is given by the Green-Kubo integral (this
derivation comes from Pep Español):

Mµν(c) =

∫
dr

∫
dr′∇δν(r)∇δµ(r′)

×
∫ τ

0
dt
〈

Ĵr (0) Ĵr′(t)
〉c
, (15)

Current Ĵr(z) ≡
∑
i

δ(r − qi )ui where ui = q̇i . (16)
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Discrete Fluctuating Hydrodynamics

A reasonable approximation

Assume that the positions of the Brownian particles evolve in a much
slower scale than the velocities (definitely true in liquids!):

Ĵr(t) =
∑
i

ui (t)δ(r − qi (t)) '
∑
i

ri (t)δ(r − qi ). (17)

This gives the conditional average

〈
Ĵr (0) Ĵr′(t)

〉c
=

〈∑
i

ui (0) δ(r − qi (0))
∑
j

uj(t)δ(r′ − qj(t))

〉c

=
∑
i

〈
ui (0) δ(r − qi (0))ui (t)δ(r′ − qi (t))

〉c

+
∑
i 6=j

〈
ui (0) δ(r − qi (0))uj(t)δ(r′ − qj(t))

〉c
. (18)
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Discrete Fluctuating Hydrodynamics

An unreasonable approximation

Now assume incorrectly that the velocities of different particles are
uncorrelated (ignore hydrodynamics!),〈

Ĵr (0) Ĵr′(t)
〉c
' δ(r − r′)

∑
i

〈ui (0) ui (t)δ(r − qi (t))〉c (19)

' δ(r − r′)
∑
i

〈ui (0) ui (t)〉c 〈δ(r − qi )〉
c . (20)

Finally we get the approximate dissipative matrix

Mµν(c) '
∫

dr

∫
dr′∇δν(r)∇δµ(r′)

× δ(r − r′)

〈∑
i

δ(r − qi )

〉c

χ(c) (21)

where the self-diffusion coefficient is

χ (c) =

∫ τ

0
dt 〈ui (0) ui (t)〉c ≈ χ =

∫ τ

0
dt 〈ui (0) ui (t)〉eq.
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Discrete Fluctuating Hydrodynamics

Dean’s Equation “derived”

Approximate but still not closed expression:

Mµν(c) ' χ
∫

dr∇δν(r)∇δµ(r)

〈∑
i

δ(r − ri )

〉c

, (22)

Close using “linear for spiky approximation” [1]:〈∑
i

δ(r − ri )

〉c

≈
∑
µ

ψµ(r)cµ.

Finally we get a dissipative matrix which is proportional to the
concentration

Mµν(c) = χ
∑
σ

||∇δν∇δµψσ||cσ (23)

which turns out to be a Petrov-Galerkin FEM discretization of the
covariance of Dean’s noise, ∇ · c (r)∇ [2].

A. Donev (CIMS) FHD 8/2019 20 / 70



Discrete Fluctuating Hydrodynamics

Caveats

Note: We can easily generate (2kBT )1/2 M1/2W(t) by generating
stochastic Gaussian fluxes on each face of the grid [2].

Now the caveats! First, for M to be SPD we require that

c(r) =
∑
σ

cσψσ(r) > 0 ∀r ,

which is not obviously true.

Things will be OK (for a physicist ;-) if the coarse-graining cells are
large enough to contain many particles.

The difficulties with the continuum equation (is c “smooth” and
non-negative?) re-surface in the discrete setting!
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Discrete Fluctuating Hydrodynamics

Yet more caveats

Somewhat embarrassingly, we have not been able to derive a
reasonable approximation of the discrete free energy function F (c).

Specifically, we have not been able to obtain an expression for the
large deviation functional for the discrete concentration field because
of the logarithmic highly nonlinear term in c ln c.

Therefore we cannot yet get a simple discretization of the
diffusion term χ∇2c from TCG, sigh...

Fundamental issue with discrete approach: Discrete operators don’t
satisfy continuum identities like the chain rule, so the cancellation
∇ · (c∇ ln c) = ∇2c doesn’t work discretely!

But let me show now another more relevant example where we have
worked it all out [1].
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Diffusion with Hydrodynamics: TCG

Fluctuating Hydrodynamics Level

Relevant variables for subgrid (nanoscopic) particles associated to a
grid node µ are:

discrete mass ρµ(t) and momentum density gµ(t) (including the
suspended particle!)
position of the particle (since momentum of particle is not slow!)
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Diffusion with Hydrodynamics: TCG

Slow variables

Key to the Theory of Coarse-Graining is the proper selection of the
relevant or slow variables.

We assume that the nanoparticle is smaller than hydrodynamic
cells and accordingly choose the coarse-grained variables [1],

q̂ (z = {q,p}) = q0, (24)

We define the mass and momentum densities of the hydrodynamic
node µ according to

ρ̂µ(z) =
N∑
i=0

miδµ(qi ), discrete of ρ̂r(z) =
N∑
i=0

miδ(qi − r)

ĝµ(z) =
N∑
i=0

piδµ(qi ), discrete of ĝr(z) =
N∑
i=0

piδ(qi − r)

where i = 0 labels the nanoparticle. Note that both mass and
momentum densities include the nanoparticle!
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Diffusion with Hydrodynamics: TCG

Mori-Zwanzig Procedure

One can use the (Mori-)Zwanzig formalism with a Markovian
assumption (due to separation of timescales) to derive a system of
SDEs for the (discrete) coarse-grained variables [1].

Introduce a regularized Dirac delta kernel

∆(r, r′) ≡ δµ(r)ψµ(r′) = ∆(r′, r) ⇒

∫
dr′∆(r, r′)δµ(r′) = δµ(r)∫
dr′∆(r, r′)ψµ(r′) = ψµ(r).

For brevity, I will drop some terms in the free energy due to fact that
the nanoparticle itself changes the equation of state of the fluid since
it introduces a local density inhomogeneity. I will also set the bulk
viscosity of the fluid to zero.
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Diffusion with Hydrodynamics: TCG

Final Discrete Equations

After making a number of approximations and using the linear for spiky
closure, we get the closed system of SODEs [1]:

dq

dt
= v(q) +

χ0

kBT
Fext +

√
2kBTχ0 Wq(t)

dρµ
dt

= ||ρ v ·∇δµ||

dgµ
dt

= ||g v·∇δµ|| − ||δµ∇P||+ kBT∇δµ(q) + δµ(q)Fext

+ η||δµ∇2v||+ η

3
||δµ∇ (∇·v) ||+ noise

The pressure equation of state is modeled by

P(r) ' c2

2ρeq

(
ρ(r)2 − ρ2

eq

)
. (25)
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Diffusion with Hydrodynamics: TCG

Final Continuum Equations

The same equations can be obtained from a Petrov-Galerkin FEM
discretization of the (isothermal) Landau-Lifshitz FHD SPDEs (+
colloid):

d

dt
q=

∫
dr∆(r,q)v(r, t) +

χ0

kBT
Fext +

√
2kBTχ0 Wq(t)

∂tρ(r, t) = −∇·g
∂tg(r, t) = −∇·(gv)−∇P(r)−kBT∇ (∆(r,q)) + Fext∆(r,q)

+ η∇2v +
(η

3

)
∇ (∇·v)

+ ∇ ·
(√

2ηkBT W̃ −
√

2ηkBT

3
Tr
(
W̃
)

I

)
where v = g/ρ, the stochastic stress is the symmetric tensor field

W̃ =
(
W + WT

)
/
√

2, and the pressure is given by

P(r) =
(
c2/2ρeq

) (
ρ(r)2 − ρ2

eq

)
.

A. Donev (CIMS) FHD 8/2019 27 / 70



Diffusion with Hydrodynamics: TCG

Top-Down versus Bottom-Up Approach

The TCG discrete equations are exactly the same as obtained from a
Petrov-Galerkin finite-element discretization of fluctuating
hydrodynamic SPDEs, using the same dual set of basis functions
as used for coarse graining.

This provides a link between continuum->discrete (top-down) and
discrete->continuum (bottom-up) approaches, “derives” FHD, gives
a way to discretize SPDEs, and relates the transport coefficients to
the microscopic dynamics.

The TCG gives generalized Green-Kubo formulas for the dissipative
coefficients.

But a key artifact is that the discrete delta function or kernel ∆ (r,q)
is attached to the grid (artificial!) rather than to the particle
cage (physical) σ (r − q).
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Diffusion with Hydrodynamics: TCG

Renormalization of Diffusion Coefficient

The bare diffusion coefficient depends on the grid resolution as
is not a material constant,

χ0 =
1

d

∫ τ

0
dt 〈δû(0)·δû(t)〉eq (26)

where the particle excess velocity over the fluid is

δû = û− 〈û〉q̂ ρ̂ĝ ≈ û− v(q).

The actual dressed or renormalized diffusion coefficient
χ = χ0 + ∆χ should be grid-independent,

χ =
1

d

∫ τ

0
dt 〈û(0)·û(t)〉eq ≈ χ0 +

1

d

∫ τ

0
dt 〈v̄(q(0))·v̄(q(t))〉eq

≈ χ0 +
1

d

∫ ∞
0

dt ψµ(q)
〈
vµ(0)·vµ′(t)

〉eq
q
ψµ′(q)
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Diffusion with Hydrodynamics: TCG

Renormalization: Bare vs Dressed

We will understand this better by switching to an SPDE-based FHD
description instead of the fully discrete one; the SPDEs are a useful
device to guide physics and discretizations/TCG.

In-between the microscopic and macroscopic lies a whole continuum
of scales: The free energy and transport coefficients (mobility)
must depend on the coarse-graining scale in nonlinear FHD
(but not in linearized FHD).

Even for interacting Brownian walkers, as coarse-graining scale
becomes macroscopic, the LLN is Fick’s law but with renormalized
free energy (proven by Varadhan):

∂tc = χ∇2Π(c) = χ∇ ·
(
dΠ(c)

dc
∇c

)
,

where Π(c) = c (df /dc)− f is the osmotic pressure, where f (c) is
the macroscopic free-energy density at thermodynamic equilibrium.
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Diffusion with Hydrodynamics: FHD

Diffusion in Liquids

There is a common belief that diffusion in all sorts of materials,
including gases, liquids and solids, is described by random walks and
Fick’s law for the concentration of labeled (tracer) particles c (r, t),

∂tc = ∇ · [χ∇c] ,

where χ � 0 is a diffusion tensor.

But there is well-known hints that the microscopic origin of Fickian
diffusion is different in liquids from that in gases or solids, and that
thermal velocity fluctuations play a key role [3].

The Stokes-Einstein relation connects mass diffusion to
momentum diffusion (viscosity η),

χ ≈ kBT

6πση
,

where σ is a molecular diameter; which shows that diffusion and
hydrodynamics (viscosity) are intimately linked.
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Diffusion with Hydrodynamics: FHD

Hydrodynamic Correlations

The mesoscopic model we develop next applies, to a certain degree of
accuracy, to two seemingly very different situations:

1 Molecular diffusion in binary fluid mixtures, notably, diffusion of tagged
particles (e.g., fluorescently-labeled molecules in a FRAP experiment).

2 Diffusion of colloidal particles at low concentrations.

The microscopic mechanism of molecular diffusion in liquids is
different from that in either gases or solids due to caging:

1 In liquids molecules are caged (trapped) for long periods of time as
they collide with neighbors: Momentum and heat diffuse much
faster than does mass.

2 The breaking and movement of cages requires collective
(hydrodynamic) rearrangement and thus the assumption of
independent Brownian walkers is not appropriate.
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Diffusion with Hydrodynamics: FHD

FHD Model

Based on the TCG justification, after an incompressible approximation, we
can postulate the FHD equations describing diffusion of tracer particles
in a liquid:

ρ∂tv + ∇π = η∇2v +
√
ηkBT ∇ ·

(
W + WT

)
, and ∇ · v = 0.

u (r, t) =

∫
σ
(
r − r′

)
v
(
r′, t
)
dr′ ≡ σ ? v

∂tc = −u ·∇c + χ0∇2c + ∇ ·
(√

2χ0cWc

)
where χ0 is a bare diffusion coefficient.
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Diffusion with Hydrodynamics: FHD

Giant Fluctuations in Diffusive Mixing

Snapshots of concentration in a miscible mixture showing the development
of a rough diffusive interface due to the effect of thermal fluctuations.
These giant fluctuations have been studied experimentally and with
hard-disk molecular dynamics.

A. Donev (CIMS) FHD 8/2019 34 / 70



Diffusion with Hydrodynamics: FHD

Linearized FHD

When macroscopic gradients are present, steady-state thermal
fluctuations become long-range correlated.

Consider concentration fluctuations around a steady state c0(r),

c(r, t) = c0(r) + δc(r, t).

The concentration fluctuations are advected by the random
velocities,

∂t (δc) + v ·∇c0 = χ∇2 (δc) +
√

2χc0 (∇ ·Wc) .

Note that here χ is the macroscopic (renormalized) diffusion
coefficient, not the bare χ0! Also note we don’t need the smoothed
velocity u in linearized FHD.
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Diffusion with Hydrodynamics: FHD

Back of the Envelope

The coupled linearized velocity-concentration system in one
dimension:

vt = νvxx +
√

2νWx

ct = χcxx − v c̄x ,

where c̄x is the imposed background concentration gradient.

The linearized system can be easily solved in Fourier space to give a
power-law divergence for the spectrum of the concentration
fluctuations as a function of wavenumber k,

〈ĉ ĉ?〉 ∼ (c̄x)2

χ(χ+ ν)k4
.

Concentration fluctuations become long-ranged and are enhanced
as the square of the gradient, to values much larger than equilibrium
fluctuations. In real life the divergence is suppressed by surface
tension, gravity, or boundaries (usually in that order).
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Diffusion with Hydrodynamics: FHD

Giant Nonequilibrium Fluctuations

Experimental results by A. Vailati et al. (Nature Comm. 2011) from a
microgravity environment, showing the enhancement of concentration
fluctuations in space (box scale is 5mm on the side, 1mm thick).
Fluctuations become macrosopically large at macroscopic scales!
They cannot be neglected as a microscopic phenomenon.
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Diffusion with Hydrodynamics: FHD

Separation of Time Scales

In order to avoid linearization, we will exploit time-scale separation to
write an effective diffusion equation for concentration by eliminating
the fluid velocity.

In liquids χ� ν, leading to a very large Schmidt number

Sc =
ν

χ
∼ 103 − 104.

This extreme stiffness solving the concentration/tracer equation
numerically challenging.

There exists a limiting (overdamped) dynamics for c in the limit
Sc →∞ in the scaling

χν = const.
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Diffusion with Hydrodynamics: FHD

Eulerian Overdamped Dynamics

Adiabatic mode elimination gives the following limiting stochastic
advection-diffusion equation (reminiscent of the Kraichnan’s model
in turbulence),

∂tc = −w �∇c + χ0∇2c, (27)

where � denotes a Stratonovich dot product.

The advection velocity w (r, t) is white in time, with covariance
proportional to a Green-Kubo integral of the velocity auto-correlation,

〈w (r, t)⊗w
(
r′, t ′

)
〉 = 2 δ

(
t − t ′

) ∫ ∞
0
〈u (r, t)⊗ u

(
r′, t + t ′

)
〉dt ′.

In the Ito interpretation, there is enhanced diffusion,

∂tc = −w ·∇c + χ0∇2c + ∇ · [∆χ∇c] (28)

where ∆χ (r) is an analog of eddy diffusivity in turbulence.

A. Donev (CIMS) FHD 8/2019 39 / 70



Diffusion with Hydrodynamics: FHD

Enhanced Diffusivity

Introduce an (infinite dimensional) set of basis functions φk (r),

(kBT )−1
∫ ∞

0
〈u (r, t)⊗ u

(
r′, t + t ′

)
〉dt ′ = R

(
r, r′
)
.

=
∑
k

φk (r)⊗ φk

(
r′
)
.

For periodic boundaries φk can be Fourier modes but in general they
depend on the boundary conditions for the velocity.

The notation w �∇c is a short-hand for
∑

k (φk ·∇c) ◦ dBk/dt,
where Bk (t) are independent Brownian motions (Wiener processes).

Similarly, w ·∇c is shorthand notation for
∑

k (φk ·∇c) dBk/dt.

The enhanced or fluctuation-induced diffusion is

∆χ (r) =

∫ ∞
0
〈u (r, t)⊗ u

(
r, t + t ′

)
〉dt ′ = (kBT )R (r, r) .
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Diffusion with Hydrodynamics: FHD

Stokes-Einstein Relation

An explicit calculation for Stokes flow gives the explicit result

∆χ (r) =
kBT

η

∫
σ
(
r − r′

)
G
(
r′, r′′

)
σ
(
r − r′′

)
dr′dr′′, (29)

where G is the Green’s function for steady Stokes flow.

For an appropriate filter σ, this gives Stokes-Einstein formula for
the diffusion coefficient in a finite domain of length L of a sphere of
radius σ,

χ =
kBT

η

{
(4π)−1 ln L

σ if d = 2

(6πσ)−1
(

1−
√

2
2
σ
L

)
if d = 3.

The limiting dynamics is a good approximation if the effective
Schmidt number Sc = ν/χeff = ν/ (χ0 + χ)� 1.

In liquids it seems χ0 � χ: Diffusion in liquids is dominated by
advection by thermal velocity fluctuations, and is more similar
to eddy diffusion in turbulence than to Fickian diffusion.
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Diffusion with Hydrodynamics: FHD

Relation to Brownian Dynamics

If we take an overdamped limit of the Lagrangian equation

dq = u (q, t) dt +
√

2χ0 dBq, (30)

we get a system of instantaneously correlated Brownian motions:

dq =
∑
k

φk (q) ◦ dBk +
√

2χ0 dBq, (31)

where Bq(t) are independent Brownian motions (one per tracer).

This is equivalent to the well-known equations of Brownian
dynamics with hydrodynamic interactions for diffusion of colloids!
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Diffusion with Hydrodynamics: BD-HI

Brownian HydroDynamics

The Ito equations of Brownian Dynamics (BD) for the (correlated)
positions of the N particles Q (t) = {q1 (t) , . . . ,qN (t)} are

dQ = −M (∂QU) dt + (2kBT M)
1
2 dB + kBT (∂Q ·M) dt, (32)

where U (Q) is a conservative interaction potential.

Here M (Q) � 0 is a symmetric positive semidefinite mobility matrix
that captures hydrodynamic correlations.

The Fokker-Planck equation (FPE) for the probability density P (Q, t)
corresponding to (32) is

∂P

∂t
=

∂

∂Q
·
{

M

[
∂U

∂Q
P + (kBT )

∂P

∂Q

]}
, (33)

and is in detailed-balance (i.e., is time reversible) with respect to the
Gibbs-Boltzmann distribution ∼ exp (−U(Q)/kBT ).
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Diffusion with Hydrodynamics: BD-HI

Hydrodynamic Correlations

The FHD equations we wrote earlier give a pairwise approximation
to the mobility:

∀ (i , j) : Mij

(
qi ,qj

)
= R

(
qi ,qj

)
,

= η−1

∫
σ
(
qi − r′

)
G
(
r′, r′′

)
σ
(
qj − r′′

)
dr′dr′′.

Here R (r, r′) is a symmetric positive-definite divergence-free
hydrodynamic kernel (div-free part is important!).

For bulk 3D commonly used is the Rotne-Prager-Yamakawa tensor,

R(r) = χ


(

3σ

4r
+
σ3

2r3

)
I +

(
3σ

4r
− 3σ3

2r3

)
r ⊗ r

r2
, r > 2σ(

1− 9r

32σ

)
I +

(
3r

32σ

)
r ⊗ r

r2
, r ≤ 2σ

(34)

for which σ (r) = δ (r − a) and χ = kBT/ (6πησ).
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Diffusion with Hydrodynamics: BD-HI

Eulerian Overdamped Dynamics

We can use Ito calculus to obtain an equation for the empirical or
instantaneous concentration

c (r, t) =
N∑
i=1

δ (qi (t)− r) . (35)

Following a similar procedure to Dean [4], with Eric Vanden-Eijnden
we get the same stochastic advection diffusion equation as derived
from the overdamped limit of the FHD equations,

∂tc = −w ·∇c + ∇ · [∆χ (r)∇c] . (36)

This equation is well-defined mathematically since linear and w is
smooth; advection is different from diffusion but random advection
looks like diffusion!

One can use the same equation (36) to evolve a probability
distribution for finding a particle at a given location; in this case
c (r, t) is a function not a distribution.
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Diffusion with Hydrodynamics: BD-HI

Importance of Hydrodynamics

For uncorrelated walkers, Mij = δij (kBT )−1 χI, the noise is very
different, ∇ ·

(√
2χcWc

)
.

In both cases (hydrodynamically correlated and uncorrelated walkers)
the mean obeys Fick’s law but the fluctuations are completely
different.

For uncorrelated walkers, out of equilibrium the fluctuations develop
very weak long-ranged correlations.

For hydrodynamically correlated walkers, out of equilibrium the
fluctuations exhibit very strong “giant” fluctuations with a power-law
spectrum truncated only by gravity or finite-size effects. These giant
fluctuations have been confirmed experimentally.
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FHD and Colloidal Suspensions

Colloidal Suspensions

Now let’s consider diffusion in colloidal suspensions of rigid
particles that are large enough that we can treat them as
“macroscopic” in fluid dynamics (e.g., put a no-slip boundary
condition on their surface).

But they are still mesoscopic and Brownian motion is important.

Methods such as Stokesian Dynamics have been developed in chemical
engineering to simulate suspensions of rigid colloidal particles.

The bottleneck in all methods is generating the Brownian
increments/velocities; no linear-scaling method existed before work in
my group.

We have shown that using linearized FHD one can generate the
Brownian motion piece with linear scaling concurrently with the
deterministic motion [5]!
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FHD and Colloidal Suspensions

Isothermal Incompressible FHD + Rigid Colloid

We consider a rigid body Ω immersed in a fluctuating fluid. In the fluid
domain, we have the fluctuating Stokes equation

ρ∂tv + ∇π = η∇2v + (2kBTη)
1
2 ∇ ·Z

∇ · v = 0,

with no-slip BCs on any walls, and the fluid stress tensor

σ = −πI + η
(
∇v + ∇Tv

)
+ (2kBTη)

1
2 Z (37)

consists of the usual viscous stress as well as a stochastic stress
modeled by a symmetric white-noise tensor Z (r, t), i.e., a Gaussian
random field with mean zero and covariance

〈Zij(r, t)Zkl(r′, t ′)〉 = (δikδjl + δilδjk) δ(t − t ′)δ(r − r′).
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FHD and Colloidal Suspensions

Fluid-Body Coupling

At the fluid-body interface the no-slip boundary condition is assumed to
apply,

v (q) = u + ω × q− ŭ (q) for all q ∈ ∂Ω, (38)

with the inertial body dynamics

m
du

dt
= F−

∫
∂Ω
λ (q) dq, (39)

I
dω

dt
= τ −

∫
∂Ω

[q× λ (q)] dq (40)

where λ (q) is the normal component of the stress on the outside of the
surface of the body, i.e., the traction

λ (q) = σ · n (q) .
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FHD and Colloidal Suspensions

Mobility Problem

From linearity, at zero Reynolds number and infinite Schmidt number the
deterministic rigid-body motion is defined by a linear mapping U = NF
via the mobility problem:

∇π = η∇2v and ∇ · v=0 +BCs

v (q) = u + ω × q− ŭ (q) for all q ∈ ∂Ω, (41)

With force and torque balance∫
∂Ω
λ (q) dq = F and

∫
∂Ω

[q× λ (q)] dq = τ , (42)

where λ (q) = σ · n (q) with

σ = −πI + η
(
∇v + ∇Tv

)
. (43)
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FHD and Colloidal Suspensions

Overdamped Brownian Dynamics

Consider a suspension of Nb rigid bodies with configuration
Q = {q, θ} consisting of positions and orientations (described
using quaternions) immersed in a Stokes fluid.

By eliminating (not done carefully mathematically!) the fluid from the
equations in the overdamped limit (infinite Schmidt number) we get
the equations of Brownian Dynamics

dQ(t)

dt
= U = NF + (2kBT N )

1
2 W (t) + (kBT ) ∂Q ·N ,

where N (Q) is the body mobility matrix, with “square root” given
by fluctuation-dissipation balance

N
1
2

(
N

1
2

)T
= N .

U = {u, ω} collects the linear and angular velocities
F (Q) = {f, τ} collects the applied forces and torques.
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FHD and Colloidal Suspensions

First Kind Boundary Integral Formulation

Let us first ignore the Brownian motion and compute NF.

We can write down an equivalent first-kind boundary integral
equation for the surface traction λ (q ∈ ∂Ω),

v (q) = u + ω × q =

∫
∂Ω

G
(
q,q′

)
λ
(
q′
)
dq′ for all q ∈ ∂Ω, (44)

along with the force and torque balance condition (39).

Assume that the surface of the body is discretized in some manner
and the single-layer operator is computed using some quadrature,∫

∂Ω
G
(
q,q′

)
λ
(
q′
)
dq′ ≡Mλ→Mλ,

where M is an SPD operator given by a kernel that decays like r−1,
discretized as an SPD mobility matrix M.
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FHD and Colloidal Suspensions

Suspensions of Rigid Bodies

In matrix/operator notation the mobility problem is a saddle-point
linear system for the tractions λ and rigid-body motion U,[

M −K
−KT 0

] [
λ
U

]
=

[
0
−F

]
, (45)

where K is a simple geometric matrix.

Solve formally using Schur complements to get

U = NF =
(
KTM−1K

)−1
F.

How do we generate a Gaussian random vector with covariance N ?
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FHD and Colloidal Suspensions

Brownian motion

FHD can help us generate a random “slip” velocity ŭ with
covariance given by the single-layer operator, 〈ŭŭT 〉 ∼M [5].

This is because solving the steady Stokes equation with a
stochastic stress tensor gives a velocity field whose covariance is the
Green’s function G.

Key idea: Solve the mobility problem with random slip ŭ,[
M −K
−KT 0

] [
λ
U

]
= −

[
ŭ = (2kBT )1/2 M

1
2 W

F

]
, (46)

U = NF + (2kBT )
1
2 NKTM−1M

1
2 W = NF + (2kBT )

1
2 N

1
2 W.

which defines a N
1
2 with the correct covariance:

N
1
2

(
N

1
2

)†
= NKTM−1M

1
2

(
M

1
2

)†
M−1KN

= N
(
KTM−1K

)
N = NN−1N = N . (47)
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Renormalization in Electrolytes

Multispecies Electrolyte Solutions

Electrolyte solutions are important for batteries, ion-selective
membranes, biology, etc.

The conductivity of a dilute electrolyte depends strongly on the salt
concentration c (ionic strength) with a reduction ∼

√
c

(non-analytic!).

We have demonstrated that (one-loop) renormalization of the
fluctuating Poisson-Nernst-Planck (PNP) equations reproduces all
of the classical predictions of Debye-Hückel-Onsager theory with
minimal effort [6].

We have also used numerical FHD to study the
reaction+diffusion+gravity instability when (0.4mol/L) NaOH is
placed on top of (1mol/L) of HCl in a Hele-Shaw cell
(Lx = Ly = 1.6 cm, Lz = 0.05 cm).
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Renormalization in Electrolytes

Acid-Base Neutralization (HCl)

Momentum fluctuations trigger the instability (GIF).
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Renormalization in Electrolytes

FHD for Electrolytes: Momentum

Momentum equation in the Boussinesq (constant density) isothermal
approximation for constant dielectric constant ε:

∂ (ρv)

∂t
+ ∇π = −∇ · (ρvvT ) + ∇ · (η∇̄v + Σ) + ∇ · (ε∇Φ)∇Φ,

∇ · v = 0,

where Φ (r, t) is the electrostatic potential and ∇ · (ε∇Φ)∇Φ is the
Lorentz force.

Stochastic momentum flux from FHD:

Σ =
√
ηkBT

[
Zmom + (Zmom)T

]
.

The electrophoretic correction to conductivity ∼
√
c is due to a

coupling of charge and momentum fluctuations.
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Renormalization in Electrolytes

FHD for Electrolytes: Mass

The mass density ρs = wsρ of species s for a mixture of NS species
satisfies

∂ (ρws)

∂t
= −∇ · (ρwsv)−∇ · Fs + msΩs ,

The dissipative and stochastic diffusive mass fluxes for a dilute
species are as in Dean’s equation,

Fs ≈ −ρD0
s

(
∇ws +

mswszs
kBT

∇Φ

)
+
√

2ρmswsD0
s Zmass

s ,

where ms is the molecular mass and the charge per unit mass is zs ,
and D0

s is the bare self-diffusion coefficient.

For chemical reaction rates Ωs we use the law of mass action;
fluctuations can either be added using the chemical Langevin
equation (CLE) or a master equation description (better).
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Renormalization in Electrolytes

Poisson equation

The electric potential Φ(r, t) satisfies the Poisson equation

−∇ · (ε∇Φ) =
Ns∑
s=1

ρszs . (48)

A key mesoscopic length is the Debye length

λD ≈

(
εkBT∑N

s=1 ρwsmsz2
s

)1/2

. (49)

From now on we consider a non-equilibrium steady state under the
action of an applied concentration gradient or electric field.

The fluctuations of the mass fractions δwi = wi − w̄i from their
average are w̄i = 〈wi 〉, and the fluctuations of the fluid velocity are δv.
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Renormalization in Electrolytes

Structure factors

The static structure factor matrix is

S =

(
Sww Swv

Swv
∗ Svv

)
, (50)

where each element is a cross correlation in Fourier space,

Sfg (k) = 〈δf̂ (k)δĝ(k)∗〉 (51)

where f̂ (k) is the Fourier transform of f (r) and star denotes
conjugate transpose.

By Plancherel’s theorem,

〈(δf )(δg)∗〉 =
1

(2π)3

∫
dk Sfg (k). (52)

Macroscopic gradient applied in the x-direction so only vx is retained
in the structure factors.
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Renormalization in Electrolytes

Linearized FHD

The FHD equations can be linearized around the macroscopic steady
state and Fourier transformed to obtain for each wavenumber a linear
SDE:

∂tÛ = MÛ + NẐ, (53)

where Û = (δŵ1, . . . , δŵNsp , δv̂x)T and

[NN ∗]ii =
2

ρ

{
k2D0

i mi w̄i i ≤ Nsp

k2
⊥νkBT i = Nsp + 1

, (54)

with k2
⊥ = k2 − k2

x = k2 sin2 θ, and θ is the angle between k and the
x axis.

Structure factor is the solution of the continuous Lyapunov equation
and easy to obtain using computer algebra,

MS + SM∗ = −NN ∗. (55)
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Renormalization in Electrolytes

Equilibrium fluctuations

The fluctuations in the electric field can be expressed in terms of
species fluctuations (ι =

√
−1),

δÊ = −ιkδφ = − ιk

εk2
δq̂ = −ρ ιk

εk2

∑
i

ziδŵi . (56)

At thermodynamic equilibrium Seq
wv = 0 and Seq

vv = sin2(θ)kBT/ρ and

Seq
wi ,wi

=
1

ρ
mi w̄i −

(
1

εkBT

)
λ2

1 + k2λ2
(mizi w̄i ) (mjzj w̄j) . (57)
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Renormalization in Electrolytes

Renormalization of free energy

It is well-known that the colligative properties (e.g., vapor pressure,
freezing point) of electrolyte solutions depend on their ionic strength.

Ionic interactions renormalize the Gibbs free energy by

∆G =
1

2
〈δqδφ〉 =

ρ2

2ε(2π)3

∫
zT (Seq

ww − Diag {mi w̄i/ρ}) z

k2
dk

= − kBT

8πλ3
.

This result leads directly to the limiting law of Debye and Hückel for
point ions and shows an experimentally measurable effect of
mesoscopic thermal charge fluctuations.

It is important to note that a broad range of wavenumbers
contributes to the integral over k, not just microscopic scales!
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Renormalization in Electrolytes

Perturbative renormalization of transport coefficients

In perturbative (one-loop) renormalization theory we expand to
quadratic order in fluctuations and then use the solution of the
linearized FHD equations to obtain the quadratic terms.

This has been applied to many situations and is not rigorous but is
simple to execute and leads to computable predictions of nonlinear
(quadratic) FHD.

Here we expand the fluxes of the ions (giving the electric current) to
quadratic order in the fluctuations:

F̄i = 〈Fi (w, v)〉 = Fi (〈w〉, 〈v〉) + D0
i

eVi

kBT
〈δwiδE〉+ 〈δvδwi 〉

≡ F̄
0
i + F̄

relx
i + F̄

adv
i (58)

The term F̄
relx
i is the relaxation correction and F̄

adv
i the advection

correction.
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Renormalization in Electrolytes

Perturbative expansion of structure factors

We can also expand the linearized FHD equations in powers of the
applied field,

M = Meq + M′ + O(X 2), (59)

where X is the applied thermodynamic force; Meq is O(X 0) and
M′ is O(X 1).

Similarly, we can expand the structure factor as
S = Seq + S′ + O(X 2).

Nonequilibrium fluctuating hydrodynamics makes a local equilibrium
approximation, which means that the noise covariance matrix NN ∗
is unchanged, giving the linear system

MeqS′ + S′(Meq)∗ = −M′Seq − Seq(M′)∗. (60)
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Renormalization in Electrolytes

Renormalization of conductivity

Let’s consider an applied electric field X ≡ Eext = Eextex .

From the linearized fluctuating PNP equations in the presence of
an applied field one can easily obtain

M′ = Eext

(
−ιk cos θ

kBT
Diag

(
D0
i mizi

)
0

sin2(θ)zT 0

)
. (61)

The conductivity gets renormalized by the fluctuations by two pieces:
a relaxation and an advective contribution.

The advective flux correction is due to the non-equilibrium
contribution to the structure factor:

S ′wi ,v
=

λ2 sin2 θ

1 + λ2k2

mi w̄izi
ρ(D0

i + ν)
Eext. (62)
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Renormalization in Electrolytes

Advective contribution

The advective flux correction comes due to correlations of charge
and velocity fluctuations:

F̄
adv
i = 〈δvδwi 〉 =

∫ π/ai

k=0
dk

∫ π/2

−π/2
cos(θ)dθ S ′wi ,v (63)

≈
(

1

3πai
− 1

6πλ

)
mi w̄izi
η

Eext (64)

for Schmidt number Sc� 1 and λ� a (dilute solution).

We have already seen the first piece ∼ 1/ai — this is the
renormalization of the diffusion coefficient by the random
advection!

The second piece ∼ 1/λ is called the electrophoretic correction and
is ∼

√
c; it was first obtained by Onsager and Fuoss by much more

complicated means.
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Relaxation contribution

A similar calculation also gives the relaxation correction

F̄
relx
i =

D0
i mizi
kBT

〈δwiδE〉 = −
(2−

√
2)D0

i m
2
i zi

48πkBTρλ3
Eext, (65)

which is in exact agreement with the result obtained by Onsager and
Fuoss.

Fluctuating hydrodynamics is a powerful modeling tool at
mesoscopic scales, as demonstrated here by the calculation of the
thermodynamic and transport corrections for electrolytes.

The (fluctuating) PNP equations need to be corrected to order
square root in the ionic strength, and are thus valid only for very
dilute solutions.
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Caveats / Future Work

In the analytical perturbative approach followed here, all corrections
to the linearized fluctuating PNP equations appear additively, not
multiplicatively as they should; to compute those we need nonlinear
computational FHD.

The theoretical calculation here only works for rather dilute
electrolytes. For realistic conditions we have λ ∼ a and we cannot
really separate microscopic and electrostatic effects.

There are also too few ions per λ3 volume, so we need to treat ions
as particles using Brownian HydroDynamics – WIP.

The renormalization theory suggests that measuring conductivity can
experimentally distinguish between bare and renormalized diffusion —
awaiting results...

A. Donev (CIMS) FHD 8/2019 69 / 70



Renormalization in Electrolytes

References
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