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Brownian HydroDynamics

Electrolyte Solutions

Electrolyte solutions are important for batteries, ion-selective
membranes, biology, etc.

Thermal fluctuations play a key role at mesoscopic systems and can
affect macroscopic observables.

We have studied bulk transport coefficients of a binary electrolyte
using the fluctuating Poisson-Nernst-Planck-Stokes equations:
conductivity and collective diffusion coefficient.

Fluctuating Hydrodynamics (FHD) gives the same results as the
classical Debye-Hückel-Onsager (DHO theory).

”Fluctuating Hydrodynamics and Debye-Hückel-Onsager Theory for Electrolytes”,
A. Donev and Alejandro L. Garcia and J.-P. Péraud and A. J. Nonaka and John
B. Bell, Current Opinion in Electrochemistry, 13:1-10, 2019 [ArXiv:1808.07799].
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Brownian HydroDynamics

Particle-continuum modeling

A key issue with the fluctuating continuum approach is that it only
works for dilute electrolytes because of two key reasons:

There are too few ions per λ3
D volume as molarity increases

(counter-intuitive!), where λD is Debye length.
It is not easy if at all possible to include steric repulsion and
microscopic structure information in FHD.

There are enough (too many!) water molecules though, so it does
make sense to coarse-grain those into a continuum implicit solvent.

This leads to Brownian HydroDynamics (BD-HI) with
electrostatic and hydrodynamic interactions.

”A Discrete Ion Stochastic Continuum Overdamped Solvent Algorithm for
Modeling Electrolytes” by Daniel R. Ladiges et al., Phys. Rev. Fluids, 6:044309,
2021 [ArXiv:2007.03036]
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Brownian HydroDynamics

BDHI for electrolytes

Coarse-grained modeling of electrolyte solutions using Brownian
HydroDynamics

Electrohydrodynamics, conduction in nanochannels, battery electrodes,
ion channels.
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Brownian HydroDynamics

Quick intro to BD-HI

The Ito equations of Brownian HydroDynamics for the (correlated)
positions of the N ions Q (t) = {q1 (t) , . . . ,qN (t)} are

dQ = MFdt + (2kBT M)
1
2 dB + kBT (∂Q ·M) dt,

where B(t) is a vector of Brownian motions, and F (Q) are
electrostatic+steric+external forces.

The symmetric positive semidefinite (SPD) hydrodynamic mobility
matrix M has 3× 3 block Mij that maps a force on particle j to a
velocity of particle i .

Key challenges for fast linear-scaling:

Long-ranged electrostatics (F (Q)) and hydrodynamics (MF)
Generating Brownian displacements with covariance ∼M (FHD!)
Generating stochastic drift ∼ ∂Q ·M (temporal integrators)
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Electrostatics in slit channels

Doubly-Periodic Geometries

Poisson’s equation for electrostatic potential with Gaussian charges:

ε∆φ(r) = −f (r) =
N∑
i=1

zi
(2πg2

w )3/2
exp

(
−‖r − qi‖

2

2g2
w

)
Start with: Electroneutral domain doubly periodic in (x , y) ∈ [−L, L] and
unbounded in z (E = −∇φ→ 0 as z → ±∞)
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Electrostatics in slit channels

Fourier-Chebyshev approach

For quasi-2D systems, f is compactly supported in [−L, L]2 × [0,H].

→ ε∆φ = 0 if z < 0 or z > H

Harmonic solve in xy Fourier space, φ (r) ≡ φ̂(kx , ky , z)

ε
(
φ̂zz − k2φ̂

)
= 0

→ φ̂(k, z) =

{
Ae−kz z > H

Bekz z < 0

where in-plane wavenumber k2 = k2
x + k2

y .
This implies the boundary conditions

φ̂z(k,H) + kφ̂(k,H) = 0

φ̂z(k, 0)− kφ̂(k, 0) = 0︸ ︷︷ ︸
Dirichlet to Neumann map!
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Electrostatics in slit channels

Doubly-periodic quasi-2D Poisson equation

Solution smooth at z = 0/H → same BCs hold for interior φ̂ !

For z ∈ [0,H], we get a simple 2-point Boundary Value Problem
(BVP) for each k:

ε
(
φ̂zz − k2φ̂

)
= −f̂ (k, z)

φ̂z(x , y ,H) + kφ(k,H) = 0

φ̂z(x , y , 0)− kφ̂(x , y , 0) = 0

Solve this BVP using Chebyshev spectral integral equation
reformulation (Leslie Greengard 1991).
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Electrostatics in slit channels

Particle-mesh (PPPM)

For electrolytes, f is the charge density due to collection of Gaussian
charges

f (r) =
N∑
i=1

qi
(2πg2

w )3/2
exp

(
−‖r − zi‖2

2g2
w

)
Can a grid-based method work? Only if h ∼ gw .

Good Bad

Need alternative strategy for point-like (narrow) charges.
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Electrostatics in slit channels

Ewald splitting

Introduce normalized Gaussian splitting function

γ(r ; ξ) ∝ e−r
2ξ2

Ewald splitting parameter ξ has units 1/length optimized for speed

Split charge = smeared charge + neutral

f = f ∗ γ︸︷︷︸
far field

+ f ∗ (1− γ)︸ ︷︷ ︸
near field

-6 -4 -2 0 2 4 6

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Remaining

"near field"

Smeared

"far field"

Original 

charge

A. Donev (CIMS) ElectrolyteBD 2/2022 12 / 30



Electrostatics in slit channels

Spectral Ewald method for slabs

Near field charge clouds have zero net charge

Exponentially-decaying near field interaction
Free space BC → analytical solution
Can be made nonzero at O(1) neighbors per point

Far field ε∆φ(f ) = γ ∗ f is smooth

Grid-based solver works
Spread charge density to grid by convolving f ∗ γ1/2

Solve ε∆ψ = (f ∗ γ1/2) on grid
Interpolate grid γ1/2 ∗ ψ to get φ(f ) = ε−1∆−1 (f ∗ γ) at charges.

”A fast spectral method for electrostatics in doubly-periodic slit channels” by
Ondrej Maxian, Raul P. Peláez, L. Greengard and A. Donev, J. Chem. Phys.,
154, 204107, 2021 [ArXiv:2101.07088].
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Electrostatics in slit channels

Permittivity jump - single wall

BCs for the potential φ at a dielectric interface: continuity of potential
and displacement

φ(x , y , 0+) = φ(x , y , 0−)

εφz(x , y , 0+) = εbφz(x , y , 0−)
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Electrostatics in slit channels

Image construction - single wall

Solution on z > 0 same as with uniform permittivity and set of image
charges

Use DP solver + Ewald splitting on the problem with images
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Electrostatics in slit channels

Image construction - two walls

Three different permittivities

We can also add surface charge

εφz(x , y , 0+)− εbφz(x , y , 0−) = −σb(x , y)

εφz(x , y ,H−)− εtφz(x , y ,H+) = σt(x , y)

Infinitely many images in far-field problem (near-field easy)
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Electrostatics in slit channels

Far-field solver for slit channels

Spread to grid = smear charges

We only need potential in a thicker
slab

Find images that overlap domain

Do initial DP solve with only these
images (BCs not satisfied)

Compute potential due to far-away
images using a harmonic BC
correction solve
Uses 3D FFTs + decoupled BVP solves for each wavenumber +
neighbor sums (all parallelizable on GPU):
UAMMD = Brownian dynamics GPU code by Raul Perez Peláez.
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Electrostatics in slit channels

Dielectric effects for confined electrolytes

Equilibrium for positively-charged wall with negatively charged ions

εout = ε→ no images, matches analytical solution of PNP equations
εout = 5/78ε ≈ 0.06ε→ Images repelled by each other (not in PNP!)
εout = 0→ field outside irrelevant, close to glass or vacuum (MD)
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Electrostatics in slit channels

GPU acceleration

Splitting parameter ξ chosen to optimize speed

Smaller ξ: Coarser grid, near field eats up entire cost
Larger ξ: Finer grid, far field (spread & interpolate, FFT) cost more
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20K charges = 6 ms per time step!
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HydroDynamics

Fluctuating Hydrodynamics

Consider N Brownian ions/blobs of size a with positions qi (t) and
velocity ui = q̇i .

The ions are immersed in a fluctuating Stokes fluid with fluid
velocity v(r, t), ∇ · v = 0 and

ρ∂tv + ∇π = η∇2v +
N∑
i=1

Fiδa (qi − r) + ∇ ·
(√

2ηkBTZ
)

ui =

∫
δa (qi − r) v (r, t) dr

along with appropriate boundary conditions.

Here the stochastic stress is a random Gaussian tensor field Z(r, t)
from fluctuating hydrodynamics (FHD):

〈Zij(r, t)Zkl(r′, t ′)〉 = (δikδjl + δilδjk) δ(t − t ′)δ(r − r′).
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HydroDynamics

Overdamped Limit

In the limit of infinite Schmidt number, the above equations
converge to the overdamped Langevin equations of Brownian
HydroDynamics for the ion positions,

dQ = MFdt + (2kBT M)
1
2 dB + kBT (∂Q ·M) dt.

Block of mobility matrix for particles i and j (including i = j!) is very
similar to the Rotne-Prager tensor used in BD-HI,

Mij = η−1

∫
δa(qi − r)G(r, r′)δa(qj − r′) drdr′,

where G is the Green’s function for the Stokes problem.

Captures Stokes-Einstein and hydrodynamic interactions:

Mii = Mself =
1

6πηa
I defines ion hydrodynamic radius

Mij ≈ η−1

(
I +

a2

6
∇2

r

)(
I +

a2

6
∇2

r′

)
G(r − r′)

∣∣r=qj

r′=qi
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HydroDynamics

Brownian HydroDynamics via FHD

Solve a steady-state Stokes problem (linear scaling in N)

∇πn = η∇2vn + ∇ ·
(√

2ηkBT

∆t
Zn

)
+

N∑
i=1

Fn
i δa (qn

i − r)

∇ · vn = 0.

Predict midpoint particle position:

qn+ 1
2 = qn +

∆t

2

∫
δa (qn

i − r) vn (r, t) dr

Correct particle position,

qn+1 = qn + ∆t

∫
δa

(
q
n+ 1

2
i − r

)
vn (r, t) dr.

”A Discrete Ion Stochastic Continuum Overdamped Solvent Algorithm for
Modeling Electrolytes” by Daniel R. Ladiges et al., Phys. Rev. Fluids, 6:044309,
2021 [ArXiv:2007.03036]
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HydroDynamics

Wet vs Dry Diffusion

In the above approach, the steady Stokes equations have to be solved
with a grid size smaller than a, i.e., Angstroms — not efficient.

Two possible solutions:

Implement Ewald splitting for Stokes to decouple particle size from
grid size; not trivial and still WIP.
Use a coarser grid of spacing ã > a, but add unresolved fluid
fluctuations in the form of dry diffusion.

We follow the second approach in the Discrete Ion Stochastic
Continuum Overdamped Solvent (DISCOS) method

Mij = µ0Iδij + η−1

∫
δã(qi − r)G(r, r′)δã(qj − r′) drdr′.

In DISCOS, we use second-order Stokes and Poisson solver and
kernels taken from Immersed Boundary Method, but can also use
spectral solvers (harder for Stokes).
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HydroDynamics

Wet vs Dry Diffusion

Total diffusion is now bare or dry diffusion (different for each ionic
species) plus wet diffusion:

D =
kBT

6πηa
= (kBT )µ0 +

kBT

6πηδã
= input

In confinement, no-slip conditions on the walls lead to
space-dependent mobility (both total and bare); µ0 (q) can be
tabulated ahead of time.

Fundamental question: Does the percentage split of the diffusion
between wet and dry matter for macroscopic observables like
total flow or total current?

Another way to ask this: How important are hydrodynamic
interactions between ions at short distances?
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HydroDynamics

Bulk conductivity

The bulk conductivity of electrolyte solutions at finite
concentrations has:

relaxation corrections due to electrostatic correlations
electrophoretic corrections due to hydrodynamic interactions
(Onsager).

Performed periodic simulations and measured conductivity at finite
fields (non-equilbrium) at 0.1M and zero field at several
concentrations,

CE→0 =
1

6 (kBT )Vτ

∫ τ

0
(ς(t)− ς(0))2 dt

ς(t) =
N∑
i=1

ziqi (t) (center of charge)

Key conclusion: As long as fluid grid resolves typical ion-ion
distance the bulk conductivity is approximated well.
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HydroDynamics

Hydrodynamics and bulk conductivity

Relative difference in conductivity from DHO theory (including Wien
corrections for the strong field case)
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HydroDynamics

From MD to BD

Key open question: How should one treat the electrolyte-wall boundary
in Poisson and Stokes solves?

How to account for evanescent fields / polarizability / images in MD/BD,
how to account for microscopic slip of fluid, etc.

”Modelling Electrokinetic Flows with the Discrete Ion Stochastic Continuum
Overdamped Solvent Algorithm” by Daniel R. Ladiges et al., in preparation
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HydroDynamics

Electroosmotic flow: MD vs BD

Results not very sensitive to wet-dry diffusion split, but some fluid grid is
required to get flow! Work currently in progress at LBNL...
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HydroDynamics

Future Directions

Achieve a time step size of 1ps (∼ 0.1a2/D) without sacrificing too
much of physical fidelity (softer ions).
Are there better (multistep/multistage) temporal integrators?

Develop GPU hydrodynamic solver (done) and then add
fluctuations (in progress).
Can we do Ewald splitting for Stokes in the presence of boundaries?

More careful comparisons to MD for nonequilibrium steady states:
how to handle BCs for implicit solvent?

Study dynamical problems (e.g., AC potentials, charging of EDLs,
etc.) and compare to continuum theories.

Bigger question: Does one need to account for the polarization /
solvation / hydrogen bonds in solvent explicitly?
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