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Introduction

Micro- and nano-hydrodynamics

e Flows of fluids (gases and liquids) through micro- (m) and
nano-scale (nm) structures has become technologically important,
e.g., micro-fluidics, microelectromechanical systems (MEMS).

o Biologically-relevant flows also occur at micro- and nano- scales.

@ Essential distinguishing feature from “ordinary” CFD: thermal
fluctuations!

@ Another important feature of small-scale flows, not discussed here, is
surface/boundary effects (e.g., slip in the contact line problem).

@ Interestingly, thermal fluctuations can affect the macroscopic
transport in fluid mixtures [1, 2]!
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Introduction

Giant Fluctuations during diffusive mixing

Figure: Snapshots of the concentration during the diffusive mixing of two fluids
(red and blue) at t =1 (top), t = 4 (middle), and t = 10 (bottom), starting from
a flat interface (phase-separated system) at t = 0.
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Introduction

Giant Fluctuations in Experiments

Figure: Experimental snapshots of the steady-state concentration fluctuations in a
solution of polystyrene in water with a strong concentration gradient imposed via
a stabilizing temperature gradient, in Earth gravity (left), and in microgravity
(right) [private correspondence with Roberto Cerbino]. The strong enhancement
of the fluctuations in microgravity is evident.
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Fluctuating Hydrodynamics
Coarse-Graining for Fluids

@ Assume that we have a fluid (liquid or gas) composed of a collection
of interacting or colliding point particles, each having mass m; = m,
position r;(t), and velocity v;.

@ Because particle interactions/collisions conserve mass, momentum,
and energy, the field

~ p m;
Urt)= |5 | =>_| mvi |[dr—ri(t)]
é i m,'v,-2/2

captures the slowly-evolving hydrodynamic modes, and other modes
are assumed to be fast (molecular).

@ We want to describe the hydrodynamics at mesoscopic scales using
a stochastic continuum approach.
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Fluctuating Hydrodynamics
Continuum Models of Fluid Dynamics

@ Formally, we consider the continuum field of conserved quantities

p p -
Urt)=1{1]j | = pv = U(r, t),
e pcy T + pv2/2

~

where the symbol = means something like approximates over long
length and time scales.

@ Formal coarse-graining of the microscopic dynamics has been
performed to derive an approximate closure for the macroscopic
dynamics [3].

@ This leads to SPDEs of Langevin type formed by postulating a
random flux term in the usual Navier-Stokes-Fourier equations with
magnitude determined from the fluctuation-dissipation balance
condition, following Landau and Lifshitz.
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The SPDEs of Fluctuating Hydrodynamics

@ Due to the microscopic conservation of mass, momentum and
energy,

8:U=—V-[F(U)— Z] = -V - [F4(U) — Fp(VU) — BW],

where the flux is broken into an advective (hyperbolic), dissipative
(diffusive), and a stochastic flux.

@ We assume that W can be modeled as spatio-temporal white noise,
i.e., a Gaussian random field with covariance

Wi(r, )WE(r, ) = (65) 6(t — t')o(r — ).

@ We will consider here binary fluid mixtures of two fluids that are
indistinguishable, p = p1 + p», and define concentration ¢ = p; /p.

@ The transport coefficients are the viscosity 7, thermal conductivity &,
and the mass diffusion coefficient .
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Fluctuating Hydrodynamics

Compressible Fluctuating Navier-Stokes

Neglecting viscous heating, the equations of compressible fluctuating
hydrodynamics are

Dep=—p(V-v)
p(Dv) == VP+ V- (nVv+EX)

pcy (D:T)=—P(V-v)+ V- (kVT+Z)
p(Dec) =V - [px (V) + W],

where D;J = 9,00+ v - V (0O) is the advective derivative,
Vv = (Vv+ Vv )—2(V -v)I/3

the heat capacity ¢, = 3kg/2m, and the pressure is P = p (kg T /m).
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Fluctuating Hydrodynamics

Incompressible Fluctuating Navier-Stokes

@ Ignoring density and temperature fluctuations, equations of
incompressible isothermal fluctuating hydrodynamics are
ON=—Vr—-v-Vv4+vVn+p 1 (V.-X),V-v=0
orc=—v-Vc+xVic+p (V- W),
where the kinematic viscosity v = n/p, and
v-Vc=V-(cv)andv- Vv ="V (w') because of
incompressibility.
@ The capital Greek letters denote stochastic fluxes that are modeled as
white-noise random Gaussian tensor and vector fields,

¥ = \/2nkg T W)

W= /2mxp c(1 — c) W),
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Fluctuating Hydrodynamics
Stochastic Forcing

@ The amplitudes of the stochastic forcing is determined from the
fluctuation-dissipation balance principle of equilibrium statistical
mechanics.

@ Adding stochastic fluxes to the non-linear NS equations produces
ill-behaved stochastic PDEs (solution is too irregular).

@ For now, we will simply linearize the equations around a steady
mean state, to obtain equations for the fluctuations around the
mean,

U = (U) +6U = Ug + 6U.
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Nonequilibrium Fluctuations

Fluctuations in the presence of gradients

o At equilibrium, hydrodynamic fluctuations have non-trivial temporal
correlations, but there are no spatial correlations between any
variables.

@ When macroscopic gradients are present, however, long-ranged
correlated fluctuations appear.

@ Consider a binary mixture of fluids and consider concentration
fluctuations around a non-uniform steady state co(r):

c(r,t) = co(r) + dc(r, t)

@ The velocity fluctuations drive and amplify the concentration
fluctuations leading to so-called giant fluctuations.
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Nonequilibrium Fluctuations

Equilibrium versus Non-Equilibrium

Results obtained using our fluctuating continuum compressible solver.

Concentration for a mixture of two (heavier red and lighter blue) fluids at
equilibrium, in the presence of gravity.

No gravity but a similar non-equilibrium concentration gradient is
imposed via the boundary conditions.

A. Donev () Diffusion Apr 2011 16 / 41



Nonequilibrium Fluctuations

Fluctuation-Enhanced Diffusion Coefficient

@ Incompressible (isothermal) linearized fluctuating hydrodynamics is
given by

Dt (6¢) +v -V =xV2(dc)+p V. [\/mep co(l— co)W(C)}
Ve + Vi =V 4 p v <\/277kBTW(")> L Vov=0

@ The nonlinear concentration equation includes a contribution to the
mass flux due to advection by the fluctuating velocities [4, 5],

—v -V (6c) +xV?(5c) = V- [ (5¢) (6v) + XV (4¢0)] .

e Does the advective mass flux — (dc) v contribute to the mean
(overall) mass transport (mixing rate)?
Think about eddy diffusivity in turbulent transport.
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Nonequilibrium Fluctuations
Model System

We study the following simple model steady-state system, mimicking
passive scalar transport in a turbulent field:

A mixture of identical but labeled/colored (as components 1 and 2) fluids
is enclosed in a box of lengths L, x L, x L,, without gravity.

Periodic boundary conditions are applied in the x (horizontal) and z
(depth) directions, and impermeable constant-temperature walls are placed
at the top and bottom boundaries.

A weak constant concentration gradient Vcy = g, = g.Y is imposed along
the y axes by enforcing constant concentration boundary conditions at the
top and bottom walls.
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(Quasi)Linearized Theory

Static Structure Factors

@ Rewrite the equations in Fourier space as a system of linear
additive-noise SODEs:

AR
ov | g. k2 ov

[ 207 ke T KPP 0 V2Tt
0 2p Iy me(1 — c) k? f/\v(")

@ These can be solved to obtain the steady-state static structure
factor (spectrum or covariance)

s= ([ @6 @63 1)

as a solution to a simple linear system.
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(Quasi)Linearized Theory

Long-Ranged Correlations

To first order in the gradient g, the equilibrium spectrum is:

S_ [ p kg TP gAS:, } |

gAS.y mptc(l-c)

where
AScy=—p "t (v+x) ke T k™" [gck® — kK],

)

In particular, denoting k. = ksinf and k| = kcosf, the important result
is that concentration and velocity fluctuations develop long-ranged
correlations:

. ke T

AScy, = ((0c)(dv))) = o (sin®0).
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(Quasi)Linearized Theory

Fluctuation-Enhanced Diffusion

Assuming the advective mass flux can be approximated from the linearized
solution:

Aj = —({(dc) (ov)) = —((6¢) (6v))in =,
— _(on 6 / /E ’;I* / ei(kfk’)-r
(2r) /kdk/,dk (5 (k, ) &v" (K, 1))

-2 [ S (k) dk = A,
k
where the enhancement Ax due to thermal velocity fluctuations is

= —(2n)3 = —kBT sin? -2
Ax = —(2m) /kASCN” (k) dk @2 (x + ) /k( 0) k=< dk.
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(Quasi)Linearized Theory

System-Size Dependence

@ The fluctuation-renormalized diffusion coefficient is Y + Ay, and
we call x the bare diffusion coefficient.

@ Because of the k—2-like divergence, the integral over all k above
diverges unless one imposes a lower bound ki, ~ 27 /L and a
phenomenological cutoff k., ~ m/Lm,e [6] for the upper bound,
where L, is a “molecular” length scale.

@ More importantly, the fluctuation enhancement Ax depends on the
small wavenumber cutoff kpi, ~ 27/L, where L is the system size.

@ For simplicity, | will use integrals over ky and k,, but one must
remember that these ought to be replaced by discrete sums (done
numerically).
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(Quasi)Linearized Theory

Two Dimensions

@ Assuming a quasi two-dimensional system, L, < L, < L,, we obtain
Ax (Ls) =

ﬂ'/Lmol 2
T, g B
@mPp (X +v) Lz Ji=2n/L, (k2 + K2)?
B kg T . Ly
- Arp(x +v)Lz  2Lmo

@ Notice that L, is arbitrary, since ultimately all we can do is
compare a given width L, to some reference system Lg:

(20) o 4 ks T o Lx
Xeff = = X drp(x +v)L, Lo’

@ When the system width becomes comparable to the height,
boundaries will intervene and for L, > L, the effective diffusion
coefficient must become a constant.
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(Quasi)Linearized Theory

Three Dimensions

@ For a three dimensional system with fixed height, L, =L, = L < L,,
we get Ay (L) =

kB T (kX7kZ <7r/LmoI k)% + k22
S dk.dk, | dk, .
(2m)3p (x +v) (keokz)>2m /L (k2 + k2 + k2)

In(1+v2) kBT<L1 2)

2mp(x + v) L

mol L

@ Unlike in two dimensions, the renormalized diffusion coefficient
converges as L — oo as L71:

(30) +<1’<BT<11>
Xef SXT o0+ \Ly L)
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Comparison to Particle Simulations
Particle Simulations

@ We use the Direct Simulation Monte Carlo particle algorithm to
simulate a miscible mixture.

@ The same results could be obtained from molecular dynamics also
(more expensive).

@ In particle simulations, a uniform concentration gradient along the
vertical () direction is implemented by randomly changing the label
of particles that collide with the top and bottom walls.

@ The mass flux can be measured by counting the number of color
flips at the top/bottom wall over a long time.

@ An alternative is to calculate the average momentum of all particles
belonging to the first component.
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Comparison to Particle Simulations
Sampling Cells

@ To look at spatial dependence of hydrodynamic variables, we must
put a grid of sampling or (hydrodynamic) cells.

@ Red particles start moving upward, on average, while blue particles
move downward. If color blind there is no movement!

@ In each sampling cell we measure the instantaneous mass and
momentum density of particles of species 1,

Jy = p1viy.

@ We also define an average (macroscopic) concentration

since (c) is a potentially biased estimator of the average
concentration.

A. Donev () Diffusion Apr 2011 28 / 41



Comparison to Particle Simulations
Effective Diffusion

@ Because particle collisions preserve color and the only sinks are at the
top and bottom walls, the average momentum along the
concentration gradient,

Uy) = (p1viy) = (p1){vay) + ((6p1)(0vay)),

does not depend on the position or shape of the sampling cell.

@ We therefore define the effective diffusion coefficient s,

Uy) = (p1va,y) = PoXefr &<,

where the background concentration gradient is defined as

_Cr—¢g
&=L, — Ay
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Comparison to Particle Simulations
Locally-Renormalized Diffusion

The locally renormalized diffusion coefficient yq is defined via

{(p1)(v1,y) = poxo (V).

Note that V€ # gc since ¢(y) is somewhat nonlinear (we fit a
polynomial to ¢(y)).

Linearized fluctuating hydrodynamics assumes that xq is a materials
constant (bare diffusion coefficient).

Better to think of xg as a parameter that can depend on the shape of
the hydrodynamic cell.
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Comparison to Particle Simulations
Theory for xq

poxerr = X — (2m) / ASe,y, (k) dk
PoXo = X — (27)" / [1— F (k)] AS., (k) dk

Xeff =x0 — (271) 73 /F(k) [ASQV” (k)} dk (no cutoff needed!)
k

@ Here F (k) is a product of low pass filters, one for each dimension,
Fi (k) = 2[1 — cos (kxAx)] / (k«Ax)? = sinc? (kyAx/2) .

@ The actual (effective) diffusion coefficient x s includes contributions
from all wavenumbers present in the system.

@ The renormalized xgq only includes “sub-grid” contributions, from
wavenumbers larger than 27 /Ax.
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Comparison to Particle Simulations
Spectra from Particle Data

SP17U1

Aky/(2m)
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Comparison to Particle Simulations
Spectra from Particle Data
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Figure: Comparison of theoretical spectra and particle data for k, = 0.
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Comparison to Particle Simulations
Two Dimensions
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Figure: Diffusion enhancement in two dimensions.
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Comparison to Particle Simulations
Three Dimensions
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Figure: Diffusion Enhancement in three dimensions.
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Conclusions
Relations to VACF

@ In the literature there is a lot of discussion about the effect of the
long-time hydrodynamic tail on the transport coefficients [7],

ke T L2 L2
C(t) = (v(0)-v(1)) = Z 35 for —ML <<
12p |7 (D + v) t] (x +v) (x +v)
@ This is in fact the same effect as the one we studied! Ignoring
prefactors,
Ay /HZ/ Cctn) kT ke T < 1 1)
VACF ~ — _dt~ _ ,
=L/ Ocr) p [+ ) 172 POt v) \hmot - L

which is like what we found (all the prefactors are in fact identical
also).
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Conclusions
Estimates of Diffusion Enhancement

@ The hydrodynamic contribution to the diffusion coefficient for a large
three dimensional system is

kg T
Dy~ ——E
X P(X + V)Lmol
@ For both gases and liquids, denoting the number density n = p/m,
Ay ~ (na3) X ~ PX.

@ For liquids ¢ ~ 1 and thus Ay ~ x, which is why was the first
hydrodynamic correction to kinetic theory to be measured in MD.

@ The fluctuation contribution always dominates for sufficiently large
(quasi) two-dimensional systems,
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Conclusions
Self-Consistent Theory

o A self-consistent form in three dimensions may be:

kg T 1 1
(3D) . < >

Xeff = = X p(xeff + veff) \Lo L

@ In two dimensions, it is postulated that a self-consistent form shows
different asymptotics

Xeir - X |1+ In =

(20) kg T L ]1/ 2
2px(Xeff + veff) Lz Lo

@ Concentration fluctuations become macroscopic in two dimensions,

(OO’ (3 7
(AC)2 Lz7

which could be measured in thin liquid films and hard-disk MD.
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Conclusions
Future Directions

Transport of other quantities, like momentum and heat.

Other types of nonlinearities in the LLNS equations:

e Dependence of transport coefficients on fluctuations.
e Dependence of noise amplitude on fluctuations.

Implications to finite-volume solvers for fluctuating hydrodynamics.

Self-consistent theory in two dimensions?

Stochastic homogenization: Can we write a nonlinear equation that
is well-behaved and correctly captures the flow at scales above some
chosen “coarse-graining” scale?
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Conclusions
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