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Introduction

Micro- and nano-hydrodynamics

Flows of fluids (gases and liquids) through micro- (µm) and
nano-scale (nm) structures has become technologically important,
e.g., micro-fluidics, microelectromechanical systems (MEMS).

Biologically-relevant flows also occur at micro- and nano- scales.

Essential distinguishing feature from “ordinary” CFD: thermal
fluctuations!

Another important feature of small-scale flows, not discussed here, is
surface/boundary effects (e.g., slip in the contact line problem).

Interestingly, thermal fluctuations can affect the macroscopic
transport in fluid mixtures [1, 2]!
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Introduction

Giant Fluctuations during diffusive mixing

Figure: Snapshots of the concentration during the diffusive mixing of two fluids
(red and blue) at t = 1 (top), t = 4 (middle), and t = 10 (bottom), starting from
a flat interface (phase-separated system) at t = 0.
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Introduction

Giant Fluctuations in Experiments

Figure: Experimental snapshots of the steady-state concentration fluctuations in a
solution of polystyrene in water with a strong concentration gradient imposed via
a stabilizing temperature gradient, in Earth gravity (left), and in microgravity
(right) [private correspondence with Roberto Cerbino]. The strong enhancement
of the fluctuations in microgravity is evident.
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Fluctuating Hydrodynamics

Coarse-Graining for Fluids

Assume that we have a fluid (liquid or gas) composed of a collection
of interacting or colliding point particles, each having mass mi = m,
position ri (t), and velocity vi .

Because particle interactions/collisions conserve mass, momentum,
and energy, the field

Ũ(r, t) =

 ρ̃

j̃
ẽ

 =
∑

i

 mi

miυi

miυ
2
i /2

 δ [r − ri (t)]

captures the slowly-evolving hydrodynamic modes, and other modes
are assumed to be fast (molecular).

We want to describe the hydrodynamics at mesoscopic scales using
a stochastic continuum approach.
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Fluctuating Hydrodynamics

Continuum Models of Fluid Dynamics

Formally, we consider the continuum field of conserved quantities

U(r, t) =

 ρ
j
e

 =

 ρ
ρv

ρcV T + ρv 2/2

 ∼= Ũ(r, t),

where the symbol ∼= means something like approximates over long
length and time scales.

Formal coarse-graining of the microscopic dynamics has been
performed to derive an approximate closure for the macroscopic
dynamics [3].

This leads to SPDEs of Langevin type formed by postulating a
random flux term in the usual Navier-Stokes-Fourier equations with
magnitude determined from the fluctuation-dissipation balance
condition, following Landau and Lifshitz.
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Fluctuating Hydrodynamics

The SPDEs of Fluctuating Hydrodynamics

Due to the microscopic conservation of mass, momentum and
energy,

∂tU = −∇ · [F(U)−Z] = −∇ · [FH(U)− FD(∇U)− BW] ,

where the flux is broken into an advective (hyperbolic), dissipative
(diffusive), and a stochastic flux.

We assume that W can be modeled as spatio-temporal white noise,
i.e., a Gaussian random field with covariance

〈Wi (r, t)W?
j (r′, t ′)〉 = (δij ) δ(t − t ′)δ(r − r′).

We will consider here binary fluid mixtures of two fluids that are
indistinguishable, ρ = ρ1 + ρ2, and define concentration c = ρ1/ρ.

The transport coefficients are the viscosity η, thermal conductivity κ,
and the mass diffusion coefficient χ.
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Fluctuating Hydrodynamics

Compressible Fluctuating Navier-Stokes

Neglecting viscous heating, the equations of compressible fluctuating
hydrodynamics are

Dtρ =− ρ (∇ · v)

ρ (Dtv) =−∇P + ∇ ·
(
η∇v + Σ

)
ρcv (DtT ) =− P (∇ · v) + ∇ · (κ∇T + Ξ)

ρ (Dtc) =∇ · [ρχ (∇c) + Ψ] ,

where Dt� = ∂t� + v ·∇ (�) is the advective derivative,

∇v = (∇v + ∇vT )− 2 (∇ · v) I/3,

the heat capacity cv = 3kB/2m, and the pressure is P = ρ (kBT/m).
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Fluctuating Hydrodynamics

Incompressible Fluctuating Navier-Stokes

Ignoring density and temperature fluctuations, equations of
incompressible isothermal fluctuating hydrodynamics are

∂tv =−∇π − v ·∇v + ν∇2v + ρ−1 (∇ ·Σ) , ∇ · v = 0

∂tc =− v ·∇c + χ∇2c + ρ−1 (∇ ·Ψ) ,

where the kinematic viscosity ν = η/ρ, and
v ·∇c = ∇ · (cv) and v ·∇v = ∇ ·

(
vvT

)
because of

incompressibility.

The capital Greek letters denote stochastic fluxes that are modeled as
white-noise random Gaussian tensor and vector fields,

Σ =
√

2ηkBT W(v)

Ψ =
√

2mχρ c(1− c)W(c).
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Fluctuating Hydrodynamics

Stochastic Forcing

The amplitudes of the stochastic forcing is determined from the
fluctuation-dissipation balance principle of equilibrium statistical
mechanics.

Adding stochastic fluxes to the non-linear NS equations produces
ill-behaved stochastic PDEs (solution is too irregular).

For now, we will simply linearize the equations around a steady
mean state, to obtain equations for the fluctuations around the
mean,

U = 〈U〉+ δU = U0 + δU.
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Nonequilibrium Fluctuations

Fluctuations in the presence of gradients

At equilibrium, hydrodynamic fluctuations have non-trivial temporal
correlations, but there are no spatial correlations between any
variables.

When macroscopic gradients are present, however, long-ranged
correlated fluctuations appear.

Consider a binary mixture of fluids and consider concentration
fluctuations around a non-uniform steady state c0(r):

c(r, t) = c0(r) + δc(r, t)

The velocity fluctuations drive and amplify the concentration
fluctuations leading to so-called giant fluctuations.
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Nonequilibrium Fluctuations

Equilibrium versus Non-Equilibrium

Results obtained using our fluctuating continuum compressible solver.

Concentration for a mixture of two (heavier red and lighter blue) fluids at
equilibrium, in the presence of gravity.

No gravity but a similar non-equilibrium concentration gradient is
imposed via the boundary conditions.
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Nonequilibrium Fluctuations

Fluctuation-Enhanced Diffusion Coefficient

Incompressible (isothermal) linearized fluctuating hydrodynamics is
given by

∂t (δc) + v ·∇c0 = χ∇2 (δc) + ρ−1∇ ·
[√

2mχρ c0(1− c0)W(c)
]

vt + ∇π = ν∇2v + ρ−1∇ ·
(√

2ηkBT W(v)
)
, ∇ · v = 0

The nonlinear concentration equation includes a contribution to the
mass flux due to advection by the fluctuating velocities [4, 5],

−v ·∇ (δc) + χ∇2 (δc) = ∇ · [− (δc) (δv) + χ∇ (δc)] .

Does the advective mass flux − (δc) v contribute to the mean
(overall) mass transport (mixing rate)?
Think about eddy diffusivity in turbulent transport.

A. Donev () Diffusion Apr 2011 17 / 41



Nonequilibrium Fluctuations

Model System

We study the following simple model steady-state system, mimicking
passive scalar transport in a turbulent field:
A mixture of identical but labeled/colored (as components 1 and 2) fluids
is enclosed in a box of lengths Lx × Ly × Lz , without gravity.
Periodic boundary conditions are applied in the x (horizontal) and z
(depth) directions, and impermeable constant-temperature walls are placed
at the top and bottom boundaries.
A weak constant concentration gradient ∇c0 = gc = gc ŷ is imposed along
the y axes by enforcing constant concentration boundary conditions at the
top and bottom walls.
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(Quasi)Linearized Theory

Static Structure Factors

Rewrite the equations in Fourier space as a system of linear
additive-noise SODEs:[

δ̂c

δ̂v

]
= −

[
ν k2P̂ 0

gc χk2

][
δ̂c

δ̂v

]

+

[
2ρ−1νkBT k2P̂ 0

0 2ρ−1χmc(1− c) k2

]1/2
[

Ŵ
(c)

Ŵ
(v)

]

These can be solved to obtain the steady-state static structure
factor (spectrum or covariance)

S =

〈[
(δv) (δv)? (δv) (δc)?

(δc) (δv)? (δc) (δc)?

]〉
,

as a solution to a simple linear system.
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(Quasi)Linearized Theory

Long-Ranged Correlations

To first order in the gradient gc , the equilibrium spectrum is:

S =

[
ρ−1kBT P̂ gc∆S?

c,v

gc∆Sc,v mρ−1 c(1− c)

]
,

where
∆Sc,v = −ρ−1(ν + χ)−1kBT k−4

[
ĝck2 − k‖k

]
,

In particular, denoting k⊥ = k sin θ and k‖ = k cos θ, the important result
is that concentration and velocity fluctuations develop long-ranged
correlations:

∆Sc,v‖ = 〈(δ̂c)(δ̂v
?

‖)〉 = − kBT

ρ(ν + χ)k2

(
sin2 θ

)
.
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(Quasi)Linearized Theory

Fluctuation-Enhanced Diffusion

Assuming the advective mass flux can be approximated from the linearized
solution:

∆j = −〈(δc) (δv)〉 ≈ −〈(δc) (δv)〉lin =,

= − (2π)−6
∫

k
dk

∫
k′

dk′ 〈δ̂c (k, t) δ̂v
? (

k′, t
)
〉e i(k−k′)·r

= − (2π)−3
∫

k
Sc,v (k) dk = ∆χ gc ,

where the enhancement ∆χ due to thermal velocity fluctuations is

∆χ = − (2π)−3
∫

k
∆Sc,v‖ (k) dk =

kBT

(2π)3ρ (χ+ ν)

∫
k

(
sin2 θ

)
k−2 dk.
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(Quasi)Linearized Theory

System-Size Dependence

The fluctuation-renormalized diffusion coefficient is χ+ ∆χ, and
we call χ the bare diffusion coefficient.

Because of the k−2-like divergence, the integral over all k above
diverges unless one imposes a lower bound kmin ∼ 2π/L and a
phenomenological cutoff kmax ∼ π/Lmol [6] for the upper bound,
where Lmol is a “molecular” length scale.

More importantly, the fluctuation enhancement ∆χ depends on the
small wavenumber cutoff kmin ∼ 2π/L, where L is the system size.

For simplicity, I will use integrals over kx and kz , but one must
remember that these ought to be replaced by discrete sums (done
numerically).
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(Quasi)Linearized Theory

Two Dimensions

Assuming a quasi two-dimensional system, Lz � Lx � Ly , we obtain
∆χ (Lx ) ≈

kBT

(2π)3ρ (χ+ ν)

2π

Lz
2

∫ π/Lmol

kx =2π/Lx

dkx

∫
dky

k2
x(

k2
x + k2

y

)2 ,

=
kBT

4πρ(χ+ ν)Lz
ln

Lx

2Lmol

Notice that Lmol is arbitrary, since ultimately all we can do is
compare a given width Lx to some reference system L0:

χ
(2D)
eff ≈ χ+

kBT

4πρ(χ+ ν)Lz
ln

Lx

L0
.

When the system width becomes comparable to the height,
boundaries will intervene and for Lx � Ly the effective diffusion
coefficient must become a constant.
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(Quasi)Linearized Theory

Three Dimensions

For a three dimensional system with fixed height, Lx = Lz = L� Ly ,
we get ∆χ (L) ≈

kBT

(2π)3ρ (χ+ ν)
4

∫ ∫ (kx ,kz )≤π/Lmol

(kx ,kz )≥2π/L
dkz dkx

∫
dky

k2
x + k2

z(
k2

x + k2
y + k2

z

)2

=
ln
(
1 +
√

2
)

kBT

2πρ(χ+ ν)

(
1

Lmol
− 2

L

)
Unlike in two dimensions, the renormalized diffusion coefficient
converges as L→∞ as L−1:

χ
(3D)
eff ≈ χ+

α kBT

ρ(χ+ ν)

(
1

L0
− 1

L

)
.
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Comparison to Particle Simulations

Particle Simulations

We use the Direct Simulation Monte Carlo particle algorithm to
simulate a miscible mixture.

The same results could be obtained from molecular dynamics also
(more expensive).

In particle simulations, a uniform concentration gradient along the
vertical (y) direction is implemented by randomly changing the label
of particles that collide with the top and bottom walls.

The mass flux can be measured by counting the number of color
flips at the top/bottom wall over a long time.

An alternative is to calculate the average momentum of all particles
belonging to the first component.
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Comparison to Particle Simulations

Sampling Cells

To look at spatial dependence of hydrodynamic variables, we must
put a grid of sampling or (hydrodynamic) cells.

Red particles start moving upward, on average, while blue particles
move downward. If color blind there is no movement!

In each sampling cell we measure the instantaneous mass and
momentum density of particles of species 1,

jy = ρ1v1,y .

We also define an average (macroscopic) concentration

c̄ =
〈ρ1〉

〈ρ1 + ρ2〉
6= 〈c〉 =

〈
ρ1

ρ1 + ρ2

〉
,

since 〈c〉 is a potentially biased estimator of the average
concentration.
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Comparison to Particle Simulations

Effective Diffusion

Because particle collisions preserve color and the only sinks are at the
top and bottom walls, the average momentum along the
concentration gradient,

〈jy 〉 = 〈ρ1v1,y 〉 = 〈ρ1〉〈v1,y 〉+ 〈(δρ1)(δv1,y )〉,

does not depend on the position or shape of the sampling cell.

We therefore define the effective diffusion coefficient χeff ,

〈jy 〉 = 〈ρ1v1,y 〉 = ρ0χeff gc ,

where the background concentration gradient is defined as

gc =
c̄T − c̄B

Ly −∆y
.
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Comparison to Particle Simulations

Locally-Renormalized Diffusion

The locally renormalized diffusion coefficient χ0 is defined via

〈ρ1〉〈v1,y 〉 = ρ0χ0 (∇y c̄) .

Note that ∇y c̄ 6= gc since c̄(y) is somewhat nonlinear (we fit a
polynomial to c̄(y)).

Linearized fluctuating hydrodynamics assumes that χ0 is a materials
constant (bare diffusion coefficient).

Better to think of χ0 as a parameter that can depend on the shape of
the hydrodynamic cell.
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Comparison to Particle Simulations

Theory for χ0

ρ0χeff = χ− (2π)−3
∫

k
∆Sc,v‖ (k) dk

ρ0χ0 = χ− (2π)−3
∫

k
[1− F (k)] ∆Sc,v‖ (k) dk

χeff =χ0 − (2π)−3
∫

k
F (k)

[
∆Sc,v‖ (k)

]
dk (no cutoff needed!)

Here F (k) is a product of low pass filters, one for each dimension,

Fx (kx ) = 2 [1− cos (kx ∆x)] / (kx ∆x)2 = sinc2 (kx ∆x/2) .

The actual (effective) diffusion coefficient χeff includes contributions
from all wavenumbers present in the system.

The renormalized χ0 only includes “sub-grid” contributions, from
wavenumbers larger than 2π/∆x .
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Comparison to Particle Simulations

Spectra from Particle Data
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Comparison to Particle Simulations

Spectra from Particle Data
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Comparison to Particle Simulations

Two Dimensions
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Figure: Diffusion enhancement in two dimensions.
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Comparison to Particle Simulations

Three Dimensions
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Figure: Diffusion Enhancement in three dimensions.
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Conclusions

Relations to VACF

In the literature there is a lot of discussion about the effect of the
long-time hydrodynamic tail on the transport coefficients [7],

C (t) = 〈v(0)·v(t)〉 ≈ kBT

12ρ [π (D + ν) t]3/2
for

L2
mol

(χ+ ν)
� t � L2

(χ+ ν)

This is in fact the same effect as the one we studied! Ignoring
prefactors,

∆χVACF ∼
∫ t=L2/(χ+ν)

t=L2
mol/(χ+ν)

kBT

ρ [(χ+ ν) t]3/2
dt ∼ kBT

ρ (χ+ ν)

(
1

Lmol
− 1

L

)
,

which is like what we found (all the prefactors are in fact identical
also).

A. Donev () Diffusion Apr 2011 37 / 41



Conclusions

Estimates of Diffusion Enhancement

The hydrodynamic contribution to the diffusion coefficient for a large
three dimensional system is

∆χ ∼ kBT

ρ(χ+ ν)Lmol
,

For both gases and liquids, denoting the number density n = ρ/m,

∆χ ∼
(
nσ3
)
χ ∼ φχ.

For liquids φ ∼ 1 and thus ∆χ ∼ χ, which is why was the first
hydrodynamic correction to kinetic theory to be measured in MD.

The fluctuation contribution always dominates for sufficiently large
(quasi) two-dimensional systems,

∆χ

χ
∼
(
nσ3
) σ

Lz
ln

Lx

σ
.
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Conclusions

Self-Consistent Theory

A self-consistent form in three dimensions may be:

χ
(3D)
eff = χ+

α kBT

ρ(χeff + νeff)

(
1

L0
− 1

L

)
In two dimensions, it is postulated that a self-consistent form shows
different asymptotics

χ
(2D)
eff ≈ χ

[
1 +

kBT

2πρχ(χeff + νeff)Lz
ln

Lx

L0

]1/2

Concentration fluctuations become macroscopic in two dimensions,

〈(δc)(δc)〉(2D)
neq

(∆c)2 ∼
(
nσ3
) σ

Lz
,

which could be measured in thin liquid films and hard-disk MD.
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Conclusions

Future Directions

Transport of other quantities, like momentum and heat.

Other types of nonlinearities in the LLNS equations:

Dependence of transport coefficients on fluctuations.
Dependence of noise amplitude on fluctuations.

Implications to finite-volume solvers for fluctuating hydrodynamics.

Self-consistent theory in two dimensions?

Stochastic homogenization: Can we write a nonlinear equation that
is well-behaved and correctly captures the flow at scales above some
chosen “coarse-graining” scale?
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Conclusions
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