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Introduction
Coarse-Graining for Fluids

@ Assume that we have a fluid (liquid or gas) composed of a collection
of interacting or colliding point particles, each having mass m; = m,
position r;(t), and velocity v;.

@ Because particle interactions/collisions conserve mass, momentum,
and energy, the field

~ p m;
Urt)= |5 | =>_| mvi |[dr—ri(t)]
é i m,'v,-2/2

captures the slowly-evolving hydrodynamic modes, and other modes
are assumed to be fast (molecular).

@ We want to describe the hydrodynamics at mesoscopic scales using
a stochastic continuum approach.

A. Donev (CIMS) Diffusion Feb 2011 4 /46



Introduction
Continuum Models of Fluid Dynamics

@ Formally, we consider the continuum field of conserved quantities

p p -
Urt)=1{1]j | = pv = U(r, t),
e pcy T + pv2/2

where the symbol = means something like approximates over long
length and time scales.

@ Formal coarse-graining of the microscopic dynamics has been
performed to derive an approximate closure for the macroscopic
dynamics [1].

@ This leads to SPDEs of Langevin type formed by postulating a
random flux term in the usual Navier-Stokes-Fourier equations with
magnitude determined from the fluctuation-dissipation balance
condition, following Landau and Lifshitz.
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Introduction

The SPDEs of Fluctuating Hydrodynamics

@ Due to the microscopic conservation of mass, momentum and
energy,

8:U= -V [F(U) - Z] = -V - [Fy(U) — Fp(VU) — BW],

where the flux is broken into a hyperbolic, diffusive, and a
stochastic flux.

@ We assume that W can be modeled as spatio-temporal white noise,
i.e., a Gaussian random field with covariance

Wi(r, t)VVf(r’, t')) = (0;) 6(t — t'")o(r — ).
@ We will consider here binary fluid mixtures, p = p1 + p2, of two fluids

that are indistinguishable, i.e., have the same material properties.

@ We use the concentration ¢ = p;/p as an additional primitive
variable.

A. Donev (CIMS) Diffusion Feb 2011 6 /46



Introduction

Incompressible Fluctuating Navier-Stokes

Neglecting viscous heating, the equations of compressible fluctuating
hydrodynamics are

Dip=—p(V-v)
p(Dv) == VP+ V- (nVv+EX)
pcy (D:T)=—P(V-v)+ V- (kVT+Z2)
p(Dic) =V - [px (V) + W], (1)

where D0 = 90+ v - V (0) is the advective derivative,
Vv =(Vv+Vv)—2(V -v)I/3

the heat capacity ¢, = 3kg/2m, and the pressure is P = p (kg T /m).
The transport coefficients are the viscosity 7, thermal conductivity x, and
the mass diffusion coefficient y.
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Introduction

Incompressible Fluctuating Navier-Stokes

@ Ignoring density and temperature fluctuations, equations of
incompressible isothermal fluctuating hydrodynamics are

v =P [—v-Vv+ vV +p 1 (V. X)] (2)
V. .v=0
drc=—v-Vc+xVic+p H (V- W), (3)

where the kinematic viscosity v = n/p, and
v-Vc=V-(cv)andv- Vv ="V (w') because of
incompressibility.

@ Here P is the orthogonal projection onto the space of divergence-free
velocity fields.
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Introduction
Stochastic Forcing

@ The capital Greek letters denote stochastic fluxes that are modeled as
white-noise random Gaussian tensor and vector fields, with
amplitudes determined from the fluctuation-dissipation balance
principle, notably,

¥ =/ 2nkg T WW
W= /2myp c(1 — c) W',

where the W's denote white random tensor/vector fields.
@ Adding stochastic fluxes to the non-linear NS equations produces
ill-behaved stochastic PDEs (solution is too irregular).

@ For now, we will simply linearize the equations around a steady
mean state, to obtain equations for the fluctuations around the
mean,

U= (U)+dU=Up+dU.

A. Donev (CIMS) Diffusion Feb 2011 9 /46



Nonequilibrium Fluctuations

Fluctuations in the presence of gradients

o At equilibrium, hydrodynamic fluctuations have non-trivial temporal
correlations, but there are no spatial correlations between any
variables.

@ When macroscopic gradients are present, however, long-ranged
correlated fluctuations appear.

@ Consider a binary mixture of fluids and consider concentration
fluctuations around a non-uniform steady state co(r):

c(r,t) = co(r) + dc(r, t)

@ The velocity fluctuations drive and amplify the concentration
fluctuations leading to so-called giant fluctuations.
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Nonequilibrium Fluctuations

Equilibrium versus Non-Equilibrium

Results obtained using our fluctuating continuum compressible solver.

Concentration for a mixture of two (heavier red and lighter blue) fluids at
equilibrium, in the presence of gravity.

No gravity but a similar non-equilibrium concentration gradient is
imposed via the boundary conditions.
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Nonequilibrium Fluctuations

Giant Fluctuations during diffusive mixing

i i S

Figure: Snapshots of the concentration during the diffusive mixing of two fluids
(red and blue) at t =1 (top), t = 4 (middle), and t = 10 (bottom), starting from
a flat interface (phase-separated system) at t = 0.
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Nonequilibrium Fluctuations

Giant Fluctuations in Experiments

Figure: Experimental snapshots of the steady-state concentration fluctuations in a
solution of polystyrene in water with a strong concentration gradient imposed via
a stabilizing temperature gradient, in Earth gravity (left), and in microgravity
(right) [private correspondence with Roberto Cerbino]. The strong enhancement
of the fluctuations in microgravity is evident.
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Nonequilibrium Fluctuations

Fluctuation-Enhanced Diffusion Coefficient

@ Incompressible (isothermal) linearized fluctuating hydrodynamics is
given by

Ot (6¢) +v -V =xV2(6c) +p V.- [\/mep co(l— Co)WC}
vi="P [szv +p iV (\/2nkBTW("))}

@ The nonlinear concentration equation includes a contribution to the
mass flux due to advection by the fluctuating velocities [2, 3],

0t (0c)+pv-Veg =V -(j+ W)=V [xV (dc)—p(dc)v] +V - W.

e Does the advective mass flux —p (dc)v contribute to the mean
(overall) mass transport (mixing rate)?
Think about eddy diffusivity in turbulent transport.
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Nonequilibrium Fluctuations
Model System

We study the following simple model steady-state system, mimicking
passive scalar transport in a turbulent field:

A mixture of identical but labeled/colored (as components 1 and 2) fluids
is enclosed in a box of lengths L, x L, x L,.

Periodic boundary conditions are applied in the x (horizontal) and z
(depth) directions, and impermeable constant-temperature walls are placed
at the top and bottom boundaries.

A weak constant concentration gradient V cg = g.y is imposed along the
y axes by enforcing constant concentration boundary conditions at the top
and bottom walls.
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(Quasi)Linearized Theory

Linear SPDE Formalism

No matter what equation is solved, the linearized equations are of the form
OU = LU + KW, (4)

where L (the generator) and IC (the filter) are time-independent linear
operators,

and W is spatio-temporal white noise, i.e., a random Gaussian field with
zero mean and covariance

(W(r, t)W*(r', t')) = 6(t — t')o(r — ¥'). (5)

We now transform to Fourier space, or any suitable orthonormal basis for
the generator with the appropriate boundary conditions. We assume here a
small gradient g. and pretend the system is periodic in y.
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(Quasi)Linearized Theory

Fourier Transforms

We can either use a continuous Fourier transform (along y), wavevector
k:

_ eik-rA
U = g [ @k (6)
Uk, t) = / e~ L(r, t)dr, (7)
rey

or a Fourier series (along x and z), k = 27k /L, wavenumber x € Z9:

Ur,t) = %Z T, 1) (8)
keV
Uk, t) = /rev e~ (. t)dr, 9)

A. Donev (CIMS) Diffusion Feb 2011 19 / 46



(Quasi)Linearized Theory

Solution in Fourier Space

For simplicity | will use the continuous notation but the transformation is

simple:
27
/kf(k) dk s Lzﬁ:f(/ﬁ)
In Fourier space we get one SODE per wavenumber k.
<17v(k, W (K, t')> — 1) 5(k — K)o(t — 1),
Feb 2011 20 / 46
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(Quasi)Linearized Theory

Structure Factors

The equilibrium distribution (invariant measure) of this is a Gaussian
process fully characterized by the covariance or dynamic structure factor

S(k. K, t) = <zft(k, U (Kt + t)> ,

though here we will only be concerned with the static structure factor
(spectrum): N

S(k, K, t =0) = S(k) (27)* 6(k — k).
Here S(k) is a self-adjoint matrix of size N2, where N, is the number of

hydrodynamic variables, and it can be obtained by solving the linear
system [4]

LS+S (Z>* - K (1?) . (11)
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(Quasi)Linearized Theory

Solution with Concentration Gradient

Ot (6c) +v-g. =xV2(dc) +p 'V [WWC}
ve =P [I/V2V +p v (\/Ww("))]

P =1 — k~?(kk")
The generator and filter in Fourier space are:

L [v(R®1-kk*) 0
ﬁ__[ g, sz}

= (=x\ [ 2p7'wkg T (K1 — kk*) 0
and K (’C ) N [ 0 2myp =t c(1 —c) k?
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(Quasi)Linearized Theory

Long-Ranged Correlations

To first order in the gradient g, the equilibrium spectrum is:

S_ [ p kg TP gAS:, } |

gAS.y mptc(l-c)

where
AScy=—p "t (v+x) ke T k™" [gck® — kK],

)

In particular, denoting k. = ksinf and k| = kcosf, the important result
is that concentration and velocity fluctuations develop long-ranged
correlations:

. ke T

ASC,VH = <(5C)(5V”)> = —W (Sih2 9) . (]_2)
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(Quasi)Linearized Theory

Fluctuation-Enhanced Diffusion

Assuming the advective mass flux can be approximated from the linearized
solution:

Aj = —((9¢) (dv)) = —{(d¢) (3v))iin =,
=—(2n)~° / dk | dK' (5c(k,t)ov" (K, t))e'k=)
k k’

— (2n)? /k Sew (k) dk = Ayg.,

where the enhancement Ay due to thermal velocity fluctuations is

=—(2n)"3 kT sin -
Ax = —(27) /kASCN” (k) dk = 2P () /( 20) k2 dk.

k
(13)
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(Quasi)Linearized Theory

System-Size Dependence

@ The fluctuation-renormalized diffusion coefficient is Y + Ay, and
we call x the bare diffusion coefficient.

@ Because of the k—2-like divergence, the integral over all k above
diverges unless one imposes a lower bound ki, ~ 27 /L and a
phenomenological cutoff k., ~ 7/Lne [5] for the upper bound,
where L, is a “molecular” length scale.

@ More importantly, the fluctuation enhancement Ax depends on the
small wavenumber cutoff kpi, ~ 27/L, where L is the system size.

@ For simplicity, | will use integrals over ky and k,, but one must
remember that these ought to be replaced by discrete sums (done
numerically).
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(Quasi)Linearized Theory

Two Dimensions

@ Assuming a quasi two-dimensional system, L, < L, < L,, we obtain

Ax (Lx) ~
7/ Lmot 00 2
fB—T 2772/ dks / dk, % (14)
(277) P (X + V) L, k=27 /Ly ky=—00 (kg + k}%)

ks T Ly

= n 15
drp(x +v)L;  2Lmor (15)
@ Notice that L, is arbitrary, since ultimately all we can do is
compare a given width L, to some reference system Lg:
2D kg T Ly
ngf ) ~ X + (16)

amp(x + )L Lo’

@ When the system width becomes comparable to the height,
boundaries will intervene and for L, > L, the effective diffusion
coefficient must become a constant.
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(Quasi)Linearized Theory

Three Dimensions

For a three dimensional system with fixed height, L, = L, =L < L, we
get Ax (L) =

kBT //(kx k) <7/ Lmoi %) k2 + k2
dk,dk / dk = .
(2m)3p (x +v) (ke,kz)>27 /L "= (k2 + k2 + kz2)2

_m@+¢)@T<1 ﬁ -

2mp(x + v) L

Lmol L

Unlike in two dimensions, the renormalized diffusion coefficient converges
as L — 0o as L1

(3D) _ In(l—i—ﬁ)kBT i_l

A. Donev (CIMS) Diffusion Feb 2011 27 / 46



Comparison to Particle Simulations
Particle Simulations

@ In particle simulations, a uniform concentration gradient along the
vertical () direction is implemented by randomly changing the label
of particles that collide with the top and bottom walls.

@ Red particles start moving upward, on average, while blue particles
move downward. If color blind there is no movement!

@ The mass flux can be measured by counting the number of color flips
at the top/bottom wall over a long time.

@ An alternative is to calculate the average momentum of all particles
belonging to the first component,

-
() = lim T / 0 [Z m,-v,-(t)] dt,
=01

t

where we evaluate the integral via Monte Carlo sampling at random
times (snapshots).
@ At steady state the two are exactly equivalent by Galilean invariance.
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Comparison to Particle Simulations
Sampling Cells

@ To look at spatial dependence of hydrodynamic variables, we must
put a grid of sampling or (hydrodynamic) cells.

@ In each sampling cell we measure the instantaneous values of the
conserved mass

Ml = plAV = C(Ml + Mg)
and the momentum of species 1,

jy = P1Viy,

where vy ,, is the instantaneous velocity of particles of species 1,
and c is the instantaneous concentration.
e We also define an average (macroscopic) concentration

- A ;) _ p1
C_<p+p>_<pl+pz>¢<c>_<m+pz>’

since (c) is a potentially biased estimator of the average
concentration.
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Comparison to Particle Simulations

Spectra from Particle Data

Aky/(27)
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Comparison to Particle Simulations
Effective Diffusion

@ Because particle collisions preserve color and the only sinks are at the
top and bottom walls, the average momentum along the
concentration gradient,

Uy) = (J) = (prviy) = —(pavay) = (p1)(viy) + ((6p1)(0v1,y)),
(18)
does not depend on the position or shape of the sampling cell.

@ We therefore define the effective or renormalized diffusion
coefficient y.fr,

{y) = {p1v1y) = poXefr &e;
where the background concentration gradient is defined as
cr — s

8c = Ly—Ay.
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Comparison to Particle Simulations
Bare Diffusion

@ The bare diffusion coefficient g is defined via

(p1){v1,y) = poxo (V) (19)

and may depend on y and the shape of the sampling cells.

e Note that V€ # g, since ¢(y) is somewhat nonlinear (we fit a
polynomial to ¢(y)).

@ Deterministic hydrodynamics assumes that xg is a materials constant
independent of Vc.

o Note that if we had used g instead of dZ(y)/dy we would get a
strong dependence xo(y).
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Comparison to Particle Simulations
Test of Constitutive Model

Bare diffusion coefficient from DSMC runs
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Figure: Particle data for xo(y) in 2D.
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Comparison to Particle Simulations

Two Dimensions

Particle (DSMC) data for Ax=2A in 2D
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Comparison to Particle Simulations

Boundary Effects

Ly=256 A, A=3.75
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Figure: Spatial dependence of stochastic advective flux.
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Comparison to Particle Simulations

Three Dimensions

Particle (DSMC) data for Ax=2\ in 3D
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Figure: Diffusion Enhancement in three dimensions.
A. Donev (CIMS) Diffusion Feb 2011 37 / 46



Additional Theory

Theory for bare diffusion g

We have steady-state (ensemble) averages of finite-volume averages of
the hydrodynamic fields over a hydrodynamic cell AV of volume
AV =Ax-Ay - Az:

oo = (p)av = Av1</Mp(r, t) dr).

Assume that j = pv, where p and v are random Gaussian fields with
known correlation

(3p(k, )V (K 1)) = S,y (K) (2)* 8k — K). (20)

The mean instantaneous velocity in a given cell is

Vst — Jay pv dr y U)av
WKy = < Jaypdr > # Wav # (Pav
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Additional Theory
contd.

By expanding to second (quadratic) order in the fluctuations, we obtain

op) (vo + dv
po(V)RY = po <IAV (;AO:(pop)%-( 5(:0;_dr ) dr> = (pv)av — Ajr, (21)

in which the actual mass flux
(pv)av =J = povo + ((0p) (0V))av = jo + 4/,

is reduced by

Ajr = AV~ /Avdr /Avdr (p(r, t)v(r, 1))
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Additional Theory
Fourier formulation

Aj=((p) (0v))av =
=AV~! / dr (2m)~ /dk/, di' (6p (k, 1) ov" (K, t))elk )

=(27)" L/é%V

Ajr :Av—2/ dr/ dr' (p(r, t)v(r,t)) = AV~ / dr/ dr’
AV AV AY AV
=(2m)" /dk/ dk' (6p (k, t)ov" (K, t))eltkr—")

=(2n)" /[AV /Avdr/Avdr’ ek (r= *)} S, (k) dk
=(2r)"3 /kF(k)SpN(k) dk.
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Additional Theory
contd.

poxer = x = (21) 7 [ ASpu, (0 dk
Poxo = x — (27)" / 1= F (k)] DSy, (K) d (22)
Here F (k) is a product of low pass filters, one for each dimension,
Fie (ke) = 2[1 — cos (kxAx)] / (kxAx)? = sinc? (keAx/2) .
The actual (effective) diffusion coefficient xes includes contributions from
AS,, \, from all wavenumbers present in the system, while the apparent

(bare) xo only includes “sub-grid" contributions, from wavenumbers larger
than 27 /Ax.
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Additional Theory
Relations to VACF

In the literature there is a lot of discussion about the effect of the
long-time hydrodynamic tail on the transport coefficients [6],

L kT 2, P
C(t) = (v(0) - v(1)) = 1295 (D 1 ) 7 for (X+L) <t< )

This is in fact the same effect as the one we studied! Ignoring prefactors,

=R/0c) kT ke T < 1 1>
L Y

AxvacF ~ / t~ —
=12 (tv) pl(x + v) 1]/ p(x+v) \Lmas L

(23)
which is like what we found (all the prefactors are in fact identical also).
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Additional Theory

Relations to Finite-Size Effects in MD

o In the MD literature, the dependence on L=! in Eq. (23) is considered
a finite-size effect that ought to be removed in order to extract the
bulk (L — o0) limit of the diffusion coefficient.

@ An Oseen-tensor based theory in Ref. [7] gives exactly the same result
for the effective diffusion as fluctuating hydrodynamics.

@ The direct connection to the VACF tail, however, does not seem to be
appreciated. For example, Ref. [7] claims that “the hydrodynamic
correction developed here is not concerned with so-called
hydrodynamic long-time tails in, e.g., the particle velocity
autocorrelation function.”
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Additional Theory
Future Directions

@ Stochastic homogenization: Can we write a nonlinear equation that
is well-behaved and correctly captures the flow at scales above some
chosen ‘“coarse-graining” scale?

Other types of nonlinearities in the LLNS equations:

e Dependence of transport coefficients on fluctuations.
e Dependence of noise amplitude on fluctuations.

Transport of other quantities, like momentum and heat.

Implications to finite-volume solvers for fluctuating hydrodynamics.
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Additional Theory
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