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Giant Fluctuations
Diffusion in Liquids

There is a common belief that diffusion in all sorts of materials,
including gases, liquids and solids, is described by random walks and
Fick’s law for the concentration of labeled (tracer) particles c (r, t),

Orc =V - [x(r)Vc],

where x = 0 is a diffusion tensor.

But there is well-known hints that the microscopic origin of Fickian
diffusion is different in liquids from that in gases or solids, and that
thermal velocity fluctuations play a key role.

The Stokes-Einstein relation connects mass diffusion to
momentum diffusion (viscosity 7)),

_ keT

= 6mwon’

where o is a molecular diameter.
Macroscopic diffusive fluxes in liquids are known to be accompanied
by long-ranged nonequilibrium giant concentration fluctuations [1].
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Giant Fluctuations

Giant Nonequilibrium Fluctuations
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Experimental results by A. Vailati et al. from a microgravity environment
[1] showing the enhancement of concentration fluctuations in space (box
scale is bmm on the side, 1Imm thick).

Fluctuations become macrosopically large at macroscopic scales!
They cannot be neglected as a microscopic phenomenon.
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Giant Fluctuations

Giant Fluctuations in Simulations

Figure: Computer simulations of microgravity experiments.
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Fluctuating Hydrodynamics Model
Fluctuating Hydrodynamics

The thermal velocity fluctuations are described by the (unsteady)
fluctuating Stokes equation,

PO + Vo =9V +/20kgTV - W, and V-v=0. (1)

where the thermal (stochastic) momentum flux is spatio-temporal
white noise,

Wi (r, )W (' t)) = (k0 + dindjx) 6(t — t')o(r —r').

The solution of this SPDE is a white-in-space distribution (very far
from smooth!).
Define a smooth advection velocity field, V - u =0,

u(r,t) = /a(r,r’)v(r’,t) dr' = o * v,

where the smoothing kernel o filters out features at scales below a
molecular cutoff scale o (typical size of the tracers).
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Fluctuating Hydrodynamics Model

Resolved (Full) Dynamics

Eulerian description of the concentration c (r, t) with an (additive
noise) fluctuating advection-diffusion equation,

Oic=—u-Vc+ X0V2C + V. (mwc) ) (2)

where g is the bare diffusion coefficient.

Lagrangian description of a passive tracer diffusing in the fluid [2],
dq _ s
dt + 2X th (3)

where Wq(t) are independent white-noise processes.

For isothermal mixtures of fluids with unequal densities (gravity),
the incompressible approximation needs to be replaced with a low
Mach approximation [3],

Op

1
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V-v=p <c>7(tc)
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Fluctuating Hydrodynamics Model

Fractal Fronts in Diffusive Mixing

Snapshots of concentration in a miscible mixture showing the development
of a rough diffusive interface due to the effect of thermal fluctuations
[4]. These giant fluctuations have been studied experimentally [1] and
with hard-disk molecular dynamics [3].

Our Goal: Computational modeling of diffusive mixing in liquids in

the presence of thermal fluctuations.
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Fluctuating Hydrodynamics Model
Molecular Dynamics Simulations

@ We performed event-driven hard disk simulations of diffusive mixing
with about 1.25 million disks.

@ The two species had equal molecular diameter but potentially
different molecular masses, with density ratio R = my/m; = 1, 2 or 4.

@ In order to convert the particle data to hydrodynamic data, we
employed finite-volume averaging over a grid of 1282 hydrodynamic
cells 10 x 10 molecular diameters (about 76 disks per hydrodynamic
cell).

@ We also performed fluctuating low Mach number finite-volume
simulations using the same grid of hydrodynamic cells, at only a
small fraction of the computational cost [3].

e Quantitative statistical comparison between the molecular dynamics
and fluctuating hydrodynamics was excellent once the values of the
bare diffusion and viscosity were adjusted based on the level of
coarse-graining.
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Fluctuating Hydrodynamics Model

Hard-Disk Simulations
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Fluctuating Hydrodynamics Model
MD vs. Fluct Hydro
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Figure: Discrete spatial spectrum of the interface fluctuations for mass ratio
R = 4 at several points in time, for fluctuating hydrodynamics (squares with error

bars) and HDMD (circles, error bars comparable to those for squares).
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Fluctuating Hydrodynamics Model

Linearized Fluctuating Hydrodynamics

@ When macroscopic gradients are present, steady-state thermal
fluctuations become long-range correlated.

o Consider a binary mixture of fluids and consider concentration
fluctuations around a steady state co(r),

c(r, t) = co(r) + oc(r, t).

@ The concentration fluctuations are advected by the random
velocities,

Dt (6¢) +v - Vg = xV2(6¢) +/2xc0 (V- W.).

o Note that here x is the deterministic (Fickian) diffusion coefficient
which is, as we will see shortly, (much) larger than the bare yo.
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Fluctuating Hydrodynamics Model
Back of the Envelope

@ The coupled linearized velocity-concentration system in one
dimension:

Vi = Vv +V2u W,
Ct = XCxx — VCx,
where g = Cy is the imposed background concentration gradient.

@ The linearized system can be easily solved in Fourier space to give a
power-law divergence for the spectrum of the concentration
fluctuations as a function of wavenumber k,

~\2
(%)

X(x +v)k*

@ Concentration fluctuations become long-ranged and are enhanced
as the square of the gradient, to values much larger than equilibrium
fluctuations.

@ In real life the divergence is suppressed by surface tension, gravity,

or boundaries (usually in that order).
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Overdamped Limit

Nonlinear Fluctuating Hydrodynamics

@ The mesoscopic model we develop here applies, to a certain degree of
accuracy, to two seemingly very different situations:

© Molecular diffusion in binary fluid mixtures, notably, diffusion of tagged
particles (e.g., fluorescently-labeled molecules in a FRAP experiment).
@ Diffusion of colloidal particles at low concentrations.

@ The microscopic mechanism of molecular diffusion in liquids is
different from that in either gases or solids due to the effects of
caging;:

@ The Schmidt number is very large (unlike gases) and particles
remain trapped in their cage while fast molecular collisions
(interactions) diffuse momentum and energy.

@ The breaking and movement of cages requires collective
(hydrodynamic) rearrangement and thus the assumption of
independent Brownian walkers is not appropriate.

This is well-appreciated in the colloidal literature and is described as
hydrodynamic “interactions” (really, hydrodynamic correlations), but
we will see that the same applies to molecular diffusion.
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Overdamped Limit
Separation of Time Scales

@ In liquids molecules are caged (trapped) for long periods of time as
they collide with neighbors:
Momentum and heat diffuse much faster than does mass.

@ This means that y < v, leading to a Schmidt number

5. =2 103 — 10%.
X

This extreme stiffness solving the concentration/tracer equation
numerically challenging.

@ There exists a limiting (overdamped) dynamics for c in the limit
Sc — o0 in the scaling [5]

XV = const.
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Overdamped Limit
Eulerian Overdamped Dynamics

@ Adiabatic mode elimination gives the following limiting stochastic
advection-diffusion equation (reminiscent of the Kraichnan's model
in turbulence),

drc = —w o Ve + xo Ve, (4)
where ® denotes a Stratonovich dot product.

@ The advection velocity w (r, t) is white in time, with covariance

proportional to a Green-Kubo integral of the velocity auto-correlation
function,

(w(r,t)ow(rt)) =20(t—t) /Ooc<u(r, ty@u(r, t+t'))dt,

@ In the lto interpretation, there is enhanced diffusion,
Orc=—w-Vc+xoV2c+ V- [x(r)Vc] (5)

where x (r) is an analog of eddy diffusivity in turbulence.
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Overdamped Limit
Stokes-Einstein Relation

@ An explicit calculation for Stokes flow gives the explicit result
ks T
x (r) = BT o ()G (7)o’ (r,¢")drdr’, (6)

where G is the Green's function for steady Stokes flow.
e For an appropriate filter o, this gives Stokes-Einstein formula for
the diffusion coefficient in a finite domain of length L,

kpT [(47)tint if d =2
YT (6 (1-24) ifd=3

@ The limiting dynamics is a good approximation if the effective
Schmidt number Sc = v/xef = v/ (X0 + x) > 1.

@ The fact that for many liquids Stokes-Einstein holds as a good
approximation implies that xo < x:
Diffusion in liquids is dominated by advection by thermal
velocity fluctuations, and is more similar to eddy diffusion in

turbulence than to standard Fickian diffusion.
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The Physics of Diffusion

Is Diffusion lrreversible?
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Figure: The decay of a single-mode initial condition, as obtained from a
Lagrangian simulation with 20482 tracers.
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The Physics of Diffusion
Effective Dissipation

@ The ensemble mean of concentration follows Fick’'s deterministic
law,

9e(c) = V- (xerV(c)) = V - [(x0 + x) V()] (7)
which is well-known from stochastic homogenization theory.

@ The physical behavior of diffusion by thermal velocity fluctuations is
very different from classical Fickian diffusion:
Standard diffusion (o) is irreversible and dissipative, but
diffusion by advection (x) is reversible and conservative.

@ Spectral power is not decaying as in simple diffusion but is transferred
to smaller scales, like in the turbulent energy cascade.

@ This transfer of power is effectively irreversible because power
“disappears”. Can we make this more precise?
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The Physics of Diffusion

Spatial Coarse-Graining
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The Physics of Diffusion
Coarse-Grained Equations

@ We postulate that a physically reasonable coarse-grained model for
cs = 0 x ¢ is the coarse-grained equation is

Orcs =~ —w5 © Ves + V- [(xo + Axs) Vs, (8)
where the diffusion renormalization Ax; (r) [6, 7, 8] is
Axs=x—0xx*d". (9)

@ The coarse-grained equation has true dissipation (irreversibility)
since Ayxgs > 0.

@ For § > o in three dimensions we get Axs ~ x and so the
coarse-grained equation becomes Fick's law with Stokes-Einstein's
form for the diffusion coefficient. This hints that
In three dimensions (but not in two dimensions!) at
macroscopic scales Fick’s law applies. At mesoscopic scales
fluctuating hydrodynamics with renormalized transport
coefficients is a good model.
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The Physics of Diffusion

Irreversible vs. Reversible Dynamics

Figure: (Top panel) Diffusive mixing studied using the Lagrangian tracer
algorithm. (Bottom) The spatially-coarse grained concentration cs obtained by
blurring with a Gaussian filter of two different widths.
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The Physics of Diffusion
Conclusions

Fluctuations are not just a microscopic phenomenon: giant
fluctuations can reach macroscopic dimensions or certainly dimensions
much larger than molecular.

Fluctuating hydrodynamics describes these effects.

@ Due to large separation of time scales between mass and

momentum diffusion we need to find the limiting (overdamped)
dynamics to eliminate the stiffness.

Diffusion in liquids is strongly affected and in fact dominated by
advection by velocity fluctuations.

This kind of “eddy” diffusion is very different from Fickian diffusion: it
is reversible (conservative) rather than irreversible (dissipative)!

At macroscopic scales, however, one expects to recover Fick's
deterministic law, in three, but not in two dimensions.

How to generalize this to realistic non-ideal binary mixtures and to
multispecies mixtures?

A. Donev (CIMS) Diffusion 6/2014 26 / 27



The Physics of Diffusion
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