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Abstract

We present two efficient and accurate numerical methods for simulating elastic and rigid

structures immersed in fluids. In the first part, we focus on the Immersed Boundary (IB)

method for studying fluid-structure interaction in problems involving an elastic structure

immersed in a viscous incompressible fluid at finite Reynolds numbers. It is well-known that

the conventional IB method suffers from poor volume conservation. This arises because the

interpolated Lagrangian velocity is not generally divergence-free. We develop a Divergence-

Free Immersed Boundary (DFIB) method that substantially reduces the volume loss in an

immersed body as it moves and deforms in the process of interacting with the fluid. We

introduce a new velocity-interpolation scheme with the property that the interpolated velocity

field in which the structure moves is continuously differentiable, and satisfies a continuous

divergence-free condition. We also develop a new force-spreading scheme that is the adjoint

of the velocity-interpolation operator. We confirm through numerical experiments in two and

three spatial dimensions that DFIB is able to achieve substantial improvement in volume

conservation compared to other existing IB methods, at the expense of a modest increase in

the computational cost. Furthermore, the new method provides smoother Lagrangian forces

(tractions) than traditional IB methods.

In the second part, we present a fluctuating boundary integral method (FBIM) for

overdamped Brownian Dynamics of two-dimensional periodic suspensions of rigid particles

immersed in a Stokes fluid. At small scales and low Reynolds numbers, the motion of

immersed particles is strongly influenced by thermal fluctuations, giving rise to Brownian

motion strongly correlated with hydrodynamic effects. We develop a novel approach for

generating Brownian displacements that arise in response to the thermal fluctuations in the
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fluid. Our approach relies on a first-kind boundary integral formulation of a mobility problem

in which a random surface velocity is prescribed on the particle surface, with zero mean and

covariance proportional to the Greens function for Stokes flow (Stokeslet). This approach

yields an algorithm that scales linearly in the number of particles for both deterministic and

stochastic dynamics, handles particles of complex shape, achieves high order of accuracy,

and can be generalized to three dimensions and other boundary conditions. We show that

Brownian displacements generated by our method obey the discrete fluctuation-dissipation

balance relation (DFDB). FBIM provides the key ingredient for time integration of the

overdamped Langevin equations for Brownian suspensions of rigid particles. We demonstrate

that FBIM obeys DFDB by performing equilibrium BD simulations of suspensions of starfish-

shaped bodies using a random finite difference temporal integrator.
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Chapter 1

Introduction

Fluid-Structure Interaction (FSI) is a broad subject that spans an incredible range of

length scales in science and engineering applications, for example, ranging from tens of meters

in wind turbine modeling, to a few centimeters in swimming and flying animals, to several

millimeters in diameter for blood flows in human aorta, to a few micrometers for an individual

cell, self-propelled micro-swimmers and colloidal particles, and further down to nanometer

scale for macromolecules and Brownian motors. FSI is of significant interest in many scientific

disciplines, however, due to its strong nonlinearity, classical analytical methods are only

applicable in certain idealized settings. Although the vast majority of scientific discovery in

FSI are pioneered by experiments, the cost in time and resources of exploring large parameter

space makes reproducing such experiments a daunting task, and thus, severely limits the

repeatability and scalability of experimental approaches.

With the increasing speed of CPUs, GPUs and large parallel computers, modeling FSI

through computer simulations has become a practical approach, and has been popular among

scientists and engineers for decades. However, developing an efficient and accurate numerical

method that captures the multiphysics and multiscale nature of FSI still remains a formidable

challenge due to the nonlinear coupling between the fluids and immersed structures, and is
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further complicated by the presence of complex moving geometries.

Various types of numerical methods for simulating different FSI problems have been

developed in the past few decades. A general classification of FSI algorithms is based on the

treatment of the underlying computational grids: conforming-mesh (body-fitted grids) versus

non-conforming mesh approaches. In the field of continuum mechanics, methods based on

Finite Element (FE) and conforming meshes are commonly employed to study fluid-solid

coupling. In these methods, physical boundary conditions are imposed at the fluid-solid

interface, and a computational mesh that conforms to the interface is used for discretization.

Although a conforming mesh can handle arbitrary complex moving geometries, a major

drawback is attributed to its excessive computational cost for re-meshing when the interface

experiences large deformations. Furthermore, it requires sophisticated procedures to avoid

severe mesh distortions in order to achieve desired accuracy. On the other hand, methods

based on non-conforming meshes avoid re-meshing by treating the computational domains

for fluids and immersed bodies separately via adding additional forcing or constraints to

the governing equations. Representative examples that fall into this category include the

Immersed Boundary (IB) method and its variant, the Immersed Interface Method (IIM).

The first part of this dissertation presents a novel IB method that improves the conventional

IB method in the volume (or mass) conservation. The IB method is both a mathematical

and a computational framework for simulating FSI problems. Although there are extensions

to the conventional IB method to account for solids or rigid bodies, here we focus on its

primitive form by assuming a closed, neutrally-buoyant and elastic body immersed in a viscous

incompressible fluid at finite (intermediate or moderately high) Reynolds numbers. The IB

formulation uses an Eulerian representation of the fluid and a Lagrangian representation of

the structure. The Lagrangian and Eulerian frames are coupled by integral transforms with

delta function kernels. The discretized fluid-structure coupling equations use approximations

to these transforms with a regularized delta function kernel to interpolate the fluid velocity
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to the structure, and to spread structural forces to the fluid.

Despite its wide applicability and ease of implementation, the conventional IB method can

be poor of volume (mass) conservation. This arises because the interpolated velocity at which

the Lagrangian structure moves does not satisfies a continuous divergence-free condition,

even though the discrete fluid velocity is enforced to be discretely divergence-free by the fluid

solver. In chapter 2, we develop a novel Divergence-Free Immersed Boundary (DFIB) method

that substantially improves the volume loss in the immersed body compared to conventional

IB methods. We introduce new velocity-interpolation scheme with the property that the

interpolated Lagrangian velocity is continuously differentiable and satisfies the continuous

divergence-free condition. To preserve the energy transfer between the Eulerian-Lagrangian

interactions, we also develop a new force-spreading scheme that is the adjoint of the velocity

interpolation scheme.

The second part of this dissertation is concerned with fluid-structure interaction in low

Reynolds number flows. More specifically, we are interested in the collective motion of

suspension of micrometer-sized rigid particles immersed in a viscous fluid. At small scales and

in the limit of zero Reynolds numbers, the motion of immersed particles is strongly influenced

by thermal fluctuations in the fluid, giving rise to Brownian motion strongly correlated with

hydrodynamic effects. Therefore, the two key ingredients that need to be included in a

computational method for particle suspensions are the long-ranged hydrodynamic interactions

(HIs) among all particles and physical boundaries, and the correlated Brownian motion of

particles.

In the absence of Brownian motion, describing the hydrodynamics of particulate suspension

requires solving the Stokes mobility problem, i.e., computing the linear and angular velocities

of the particles in response to applied (external) forces and torques. For passive suspensions

of spherical particles, the method of regularized Stokeslet, Brownian (BD) and Stokesian

Dynamics (SD), and Force-Coupling Method (FCM) are commonly used to capture the
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far-field behavior of the hydrodynamic interactions. Although modern fast algorithms can

solve the deterministic Stokes problem with linear-scaling by using the Fast Multipole Method

(FMM) for an unbounded domain, and using Ewald-like methods for periodic and confined

domains, Brownian (stochastic) displacements of particles are typically generated generated

iteratively by a Chebyshev polynomial approximation method, or by the Lanczos algorithm

with super-linear scaling as the number of particles grows.

Essentially all commonly-used methods are limited to spherical particles, and generalization

to include particles of complex shape is generally difficult. Furthermore, these methods employ

an uncontrolled truncation of a multipole expansion hierarchy and therefore become inaccurate

when particles get close to one another as in dense suspensions.

For deterministic Stokes problems, the Boundary Integral Method (BIM) [1] is very well-

developed [2, 3, 4] and allows one to handle complex particle shapes and achieve controlled

accuracy even for dense suspensions [5, 6]. In the boundary integral framework, the steady

Stokes mobility problem is reformulated as an integral equation of unknown densities that are

defined on the boundary, using a first-kind (single-layer densities) or second-kind (double-layer

densities) formulation, or a mixture of both. Suspended particles of complex geometry can

be directly discretized by a surface mesh, and by a suitable choice of surface quadrature

higher-order, or even spectral accuracy, can be achieved.

The current development of BIM for particle suspensions is limited to the deterministic

case only. In chapter 3 we present a fluctuating boundary integral method (FBIM) for

overdamped Brownian Dynamics (BD) of two-dimensional periodic suspensions of rigid

particles of complex shape immersed in a Stokes fluid. To the best of our knowledge, this is

the first boundary integral method that accounts for Brownian motion of nonspherical particles.

Our approach relies on a first-kind boundary integral formulation of a mobility problem in

which a random surface velocity is prescribed on the particle surface, with zero mean and

covariance proportional to the Green’s function for Stokes flow (Stokeslet). This approach
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yields an algorithm that scales linearly in the number of particles for both deterministic and

stochastic dynamics, handles particles of complex shape, achieves high order of accuracy,

and can be generalized to three dimensions and other boundary conditions. We show that

Brownian displacements generated by our method obey the discrete fluctuation-dissipation

balance relation (DFDB).

Because of the distinct nature of the two subjects discussed in this dissertation, we give

more detailed motivation and background knowledge in the introduction section of each

chapter.

Material presented in this dissertation has previously appeared in the following peer-

reviewed publications/preprint:

• Y. Bao, J. Kaye, C. S. Peskin, A gaussian-like immersed-boundary kernel with three

continuous derivatives and improved translational invariance, Journal of Computational

Physics 316 (2016) 139 – 144, software and updated documentation available at https://

github.com/stochasticHydroTools/IBMethod, including also a new 5-pt kernel with

three continuous derivatives. doi:http://dx.doi.org/10.1016/j.jcp.2016.04.024.

URL http://www.sciencedirect.com/science/article/pii/S0021999116300663

• Y. Bao, A. Donev, B. E. Griffith, D. M. McQueen, C. S. Peskin, An Immersed Boundary

Method with Divergence-Free Velocity Interpolation and Force Spreading, Journal of

Computational Physics 347 (2017) 183–206. doi:http://dx.doi.org/10.1016/j.jcp.

2017.06.041

• Y. Bao, M. Rachh, E. Keaveny, L. Greengard, A. Donev, A fluctuating boundary

integral method for Brownian suspensions, submitted to J. Comp. Phys., preprint

ArXiv:1709.01480 (2017)
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Chapter 2

An Immersed Boundary Method with

Divergence-Free Velocity

Interpolation and Force Spreading

The Immersed Boundary (IB) method is a mathematical framework for constructing

robust numerical methods to study fluid-structure interaction in problems involving an

elastic structure immersed in a viscous incompressible fluid. The IB formulation uses an

Eulerian representation of the fluid and a Lagrangian representation of the structure. The

Lagrangian and Eulerian frames are coupled by integral transforms with delta function kernels.

The discretized IB equations use approximations to these transforms with regularized delta

function kernels to interpolate the fluid velocity to the structure, and to spread structural

forces to the fluid. It is well-known that the conventional IB method suffers from poor

volume conservation. This arises because the interpolated Lagrangian velocity is not generally

divergence-free. In this chapter we present a Divergence-Free Immersed Boundary (DFIB)

method that susbstantially reduces the volume loss in an immersed body as it moves and

deforms in the process of interacting with the fluid. We introduce a new velocity-interpolation
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scheme with the property that the interpolated velocity field in which the structure moves

is continuously differentiable, and satisfies a continuous divergence-free condition. We also

develop a new force-spreading scheme that is the adjoint of the velocity-interpolation operator.

We present a new family of regularized delta functions (IB kernels) that have three continuous

derivatives and improved translational invariance. We confirm through numerical experiments

in two and three spatial dimensions that this new IB method is able to achieve substantial

improvement in volume conservation compared to other existing IB methods, at the expense

of a modest increase in the computational cost. Furthermore, the new method provides

smoother Lagrangian forces (tractions) than traditional IB methods.

2.1 Introduction

The Immersed Boundary (IB) method [10] is a general mathematical framework for the

numerical solution of fluid-structure interaction problems arising in biological and engineering

applications. The IB method was introduced to simulate flow patterns around the heart

valves [11, 12], and since its success in modeling cardiac fluid dynamics [13, 14, 15, 16], it has

been extended and applied to various other applications, including but not limited to motion

of biological swimmers [17, 18], dynamics of red-blood cells [19] and dry foam [20, 21], and

rigid body motion [22, 23].

The essence of the IB method as a numerical scheme lies in its simple way of coupling an

Eulerian representation of the fluid and a Lagrangian representation of the structure. The

force spreading linear operator S that spreads forces (stresses) from the structure to the fluid

and the velocity interpolation linear operator S? that interpolates velocities from the fluid

to the structure are carried out via a regularized delta function δh. One effective way to

construct δh is to require the regularized delta function to satisfy a set of moment conditions

to achieve approximate grid translation-invariance and desired interpolation accuracy [7],
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thereby avoiding special grid treatment near the fluid-structure interface. In spite of its wide

applicability and ease of implementation, the conventional IB method with a collocated-

grid discretization (referred to herein as IBCollocated) has two well-known shortcomings in

accuracy: it achieves only first-order convergence for problems that possess sharp-interface

solutions [24, 25], and it can be relatively poor of volume conservation [26]. Much research

effort has been put into improving the convergence rate of the IB method to second order or

even higher order for problems with singular forcing at the sharp interface. Notable examples

include, the Immersed Interface Method (IIM) [27, 28], and more recently, a new method

known as Immersed Boundary Smooth Extension [29, 30]. Our focus here, however, is on

improving the volume conservation properties of the IB method.

As an immediate consequence of fluid incompressibility, which is one of the basic as-

sumptions of the IB formulation, the volume enclosed by the immersed structure is exactly

conserved as it deforms and moves with the fluid in the continuum setting. Thus, a desirable

feature of an IB method is to conserve volume as nearly as possible. In practice, however, it

is observed that, even in the simplest case of a quasi-static pressurized membrane [31], the

conventional IB method (regardless of collocated- or staggered-grid discretization) produces

volume error that persistently grows in time, as if fluid “leaks” through the boundary. An

intuitive explanation for this “leak” is that fluid is “squeezing” between the marker points

used to discretize the boundary in a conventional IB method; however, this is not the full story,

because refining the Lagrangian discretization does not improve the volume conservation of

the method for a fixed Eulerian discretization.

In the conventional IB method, we can extend the notion of velocity interpolation to

any point in the domain (not restricted to the immersed structure), denoted here with an

italic X. The continuous interpolated velocity field can be written as U(X) = (J u)(X),

where J denotes the continuous interpolation operator that interpolates the velocity at X

from the discrete fluid velocity u. If a closed surface moves with velocity that is continuously
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divergence-free with respect to the continuum divergence operator, i.e., (∇ · U)(X) = 0,

then the volume enclosed by the (deformed) surface will be exactly conserved. However, in

the discrete setting, even if the interpolated velocity field is continuously divergence-free,

exact volume conservation is generally not achieved because of the time-stepping error from

the temporal integrator. Another source of error comes from discretizing the surface itself.

In the IB method, only a discrete collection of points on the surface, i.e., the Lagrangian

markers, move according to the interpolated velocity field. A closed discretized surface

can be constructed by simply connecting the Lagrangian markers defining a facet, and the

resulting faceted surface by this construction does not enclose a constant volume. In the

absence of temporal integration errors, this kind of volume-conservation error will approach

zero as the discretization of the surface is refined. Peskin and Printz realized that the

major cause of poor volume conservation of IBCollocated is that the continuous interpolated

velocity field given by the conventional IB interpolation operator (denoted by J IB) is not

continuously divergence-free [26], despite that the discrete fluid velocity is enforced to be

discretely divergence-free with respect to the discrete divergence operator by the fluid solver.

To improve the volume conservation of the conventional IB method, Peskin and Printz

proposed a modified finite-difference approximation to the discrete divergence operator to

ensure that the average of the continuous divergence of the interpolated velocity is equal to

zero in a small control volume with size of a grid cell [26]. Their IB method with modified

finite-difference operators (herein referred to as IBModified) was applied to a two-dimensional

model of the heart, and it achieved improvement in volume conservation by one-to-two orders

of magnitude compared to IBCollocated. Nevertheless, a major drawback of IBModified that

limits its use in applications is its complex, non-standard finite-difference operators that uses

coefficients derived from the regularized delta function (but see [20, 21] for applications).

To address the issue of spurious currents across immersed structure supporting extremely

large pressure differences, Guy and Strychalski [32] developed a different extension of the
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IB method that uses non-uniform Fast Fourier Transform [33, 34] (NUFFT) to generate

“spectral” approximations to the delta function, which also has superior volume conservation.

Over the past two decades, the staggered-grid (MAC) discretization has been widely

adopted by the IB community [14, 16, 17, 22, 23, 35]. In addition to its most celebrated

feature of avoiding the odd-even decoupling in the Poisson solver that can otherwise occur

with collocated-grid discretization, which leads to “checkerboard” instability in the solutions,

Griffith [31] concluded from his numerical studies that the improvement in volume conservation

of the IB method with staggered-grid discretization (IBMAC) is essentially the same as

that of IBModified. In practice, IBMAC is more practical than IBModified in that the

improvement in volume conservation directly comes as a byproduct of grid discretization

without any modification to the finite-difference operators, and it is relatively straightforward

to extend IBMAC to include adaptive mesh refinement [14, 36] and physical boundary

conditions [37]. However, we emphasize that the nature of Lagrangian velocity interpolation

of IBMAC remains the same as that of IBCollocated, and, hence, there is much room for

further improvement in volume conservation by ensuring that the interpolated velocity is

constructed to be nearly or exactly divergence-free. We note that the methods designed to

improve the convergence rate of IB methods, such as IIM [27, 28] and the Blob-Projection

method [38], also improve volume conservation, because the solution near the interface is

computed more accurately. These methods, however, are somewhat more complex and less

generalizable than the conventional IB method.

This chapter is concerned with further improving volume conservation of IBMAC by

constructing a continuous velocity-interpolation operator J that is divergence-free in the

continuous sense. The discrete IB interpolation operator S? is simply the restriction of J
to the Lagrangian markers. The key idea introduced in this chapter is first to construct a

discrete vector potential that lives on an edge-centered staggered grid from the discretely

divergence-free fluid velocity, and then to apply the conventional IB interpolation scheme to
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obtain a continuum vector potential, from which the interpolated velocity field is obtained by

applying the continuum curl operator. Note that the existence of the discrete vector potential

relies on the fact that the discrete velocity field is discretely divergence-free. The interpolated

velocity field obtained in this manner is guaranteed to be continuously divergence-free, since

the divergence of the curl of any vector field is zero. We also propose a new force-spreading

operator S that is defined to be the new adjoint of the interpolation operator S?, so that

Lagrangian-Eulerian interaction conserves energy. The Eulerian force density that is the

result of applying this force-spreading operator to a Lagrangian force field turns out to be

discretely divergence-free, so we refer to this new force-spreading operation as divergence-free

force spreading. We name the IB method equipped with the new interpolation and spreading

operators as the Divergence-Free Immersed Boundary (DFIB) method. As presented here,

the DFIB method is limited to periodic domains.

In contrast to the local nature of interpolation and spreading in the conventional IB

method, the spreading and interpolation operators of the DFIB method turn out to be non-

local in that their construction requires the solution of discrete Poisson equations, although

these operators can be evaluated efficiently using the Fast Fourier Transform (FFT) or

multigrid methods. Another new feature of our method is that transferring information

between the Eulerian grid and the Lagrangian mesh involves derivatives of the regularized

delta function ∇δh instead of only δh. We confirm through various numerical tests in both

two and three spatial dimensions that the DFIB method is able to reduce volume error by

several orders of magnitude compared to IBMAC and IBModified at the expense of only

a modest increase in the computational cost. Moreover, we confirm that the volume error

for DFIB decreases as the Lagrangian mesh is refined with the Eulerian grid size held fixed,

which is not the case in the conventional IB method [26]. In addition to the substantial

improvement in volume conservation, the DFIB method is quite straightforward to realize

from an existing modular IB code with staggered-grid discretization, that is, by simply
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switching to the new velocity-interpolation and force-spreading schemes while leaving the

fluid solver and time-stepping scheme unchanged.

The rest of the chapter is organized as follows. In Sec. 2.2, we begin by giving a brief

description of the continuum equations of motion in the IB framework. Then we define the

staggered grid on which the fluid variables live and introduce the spatial discretization of

the equations of motion. Sec. 2.4 introduces the two main contributions of this chapter:

divergence-free velocity interpolation and force spreading. In Sec. 2.5, we present a formally

second-order time-stepping scheme that is used to evolve the spatially-discretized equations,

followed by a cost comparison of DFIB and IBMAC. Numerical examples of applying DFIB

to problems in two and three spatial dimensions are presented in Sec. 2.6, where the volume-

conserving characteristics of the new scheme are assessed.

2.2 Equations of motion and spatial discretization

2.2.1 Equations of motion

This section provides a brief description of the continuum equations of motion in the IB

framework [10]. We assume a neutrally-buoyant elastic structure Γ that is described by the

Lagrangian variables s, immersed in a viscous incompressible fluid occupying the whole fluid

domain Ω ⊂ R3 that is described by the Eulerian variables x. Eqs. (2.2.1) and (2.2.2) are

the incompressible Navier-Stokes equations describing mass and momentum conservation of

the fluid, in which u(x, t) denotes the fluid velocity, p(x, t) is the pressure, and f(x, t) is the

Eulerian force density (force per unit volume) exerted by the structure on the fluid. In this

formulation, we assume that the density ρ and the viscosity µ of the fluid are constant. The
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fluid-structure coupled equations are:

ρ

(
∂u

∂t
+ u · ∇u

)
+∇p = µ∇2u+ f , (2.2.1)

∇ · u = 0, (2.2.2)

f(x, t) =

∫
Γ

F (s, t) δ(x−X (s, t)) ds, (2.2.3)

∂X
∂t

(s, t) = u(X (s, t), t) =

∫
Ω

u(x, t) δ(x−X (s, t)) dx, (2.2.4)

F (s, t) = F [X (·, t) ; s] = − δE
δX (s, t). (2.2.5)

Eqs. (2.2.3) and (2.2.4) are the fluid-structure interaction equations that couple the Eulerian

and the Lagrangian variables. Eq. (2.2.3) relates the Lagrangian force density F (s, t) to the

Eulerian force density f(x, t) using the Dirac delta function, where X (s, t) is the physical

position of the Lagrangian point s. Eq. (2.2.4) is simply the no-slip boundary condition of

the Lagrangian structure, i.e., the Lagrangian point X (s, t) moves at the same velocity as

the fluid at that point. In Eq. (2.2.5), the system is closed by expressing the Lagrangian

force density F (s, t) in the form of a force density functional F [X (·, t) ; s], which in many

cases can be derived from an elastic energy functional E[X (·, t) ; s] by taking the variational

derivative, denoted here by δ/δX , of the elastic energy.

2.2.2 Spatial discretization

Throughout the chapter, we assume the fluid occupies a periodic domain Ω = [0, L]3 that

is discretized by a uniform N ×N ×N Cartesian grid with meshwidth h = L
N

. Each grid

cell is indexed by (i, j, k) for i, j, k = 0, . . . , N − 1. For the Eulerian fluid equations, we use

the staggered-grid discretization, in which the pressure p is defined on the cell-centered grid

(Fig. 2.1a), denoted by C, i.e., at positions xi,j,k = ((i+ 1
2
)h, (j + 1

2
)h, (k+ 1

2
)h). The discrete

fluid velocity u is defined on the face-centered grid (Fig. 2.1b), denoted by F, with each
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(a) (b) (c)

Fig. 2.1: Staggered grids on which discrete grid functions are defined. (a) Cell-centered
(green) and node-centered (black) grids for scalar functions. (b) Face-centered grid for vector
grid functions. (c) Edge-centered grid for vector grid functions.

component perpendicular to the corresponding cell faces, i.e., at positions xi− 1
2
, j, k , xi, j− 1

2
, k

and xi, j, k− 1
2

for each velocity component respectively. We also introduce two additional

shifted grids: the node-centered grid (Fig. 2.1a) for scalar grid functions, denoted by N , i.e.,

at positions xi− 1
2
, j− 1

2
, k− 1

2
, and the edge-centered grid (Fig. 2.1c) for vector grid functions,

denoted by E, with each component defined to be parallel to the corresponding cell edges

i.e., at positions xi, j− 1
2
, k− 1

2
, xi− 1

2
, j, k− 1

2
and xi− 1

2
, j− 1

2
, k for each component respectively. In

Sec. 2.4, we will use these half-shifted staggered grids to construct divergence-free velocity

interpolation and force spreading.

To discretize the differential operators in Eqs. (2.2.1) and (2.2.2), we introduce the central

difference operators corresponding to the partial derivatives ∂/∂xα,

Dh
αϕ :=

ϕ(x + h
2
eα)− ϕ(x− h

2
eα)

h
, α = 1, 2, 3, (2.2.6)

where ϕ is a scalar grid function and {e1, e2, e3} is the standard basis of R3. We can use Dh
α

to define the discrete gradient, divergence and curl operators:

Ghϕ := (Dh
1ϕ, D

h
2ϕ, D

h
3ϕ), (2.2.7)
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Dh · v := Dh
αvα, (2.2.8)

Dh × v := εijkD
h
j vk, (2.2.9)

where v is a vector grid function, εijk is the totally antisymmetric tensor, and the Einstein

summation convention is used here. The discrete differential operators may be defined on

different pairs of domain and range (half-shifted staggered grids), and therefore, in a slight

abuse of notation, we will use the same notation to denote the different operators,

Gh : ϕ(C) −→ v(F) or ϕ(N) −→ v(E), (2.2.10)

Dh· : v(E) −→ ϕ(N) or v(F) −→ ϕ(C), (2.2.11)

Dh× : v(E) −→ v(F) or v(F) −→ v(E). (2.2.12)

Although the curl operator does not appear in the equations of motion explicitly, we define it

here for use in Sec. 2.4. The discrete scalar Laplacian operator can be defined by Lh = Dh ·Gh,

which yields the familiar compact second-order approximation to ∇2:

Lhϕ :=
3∑

α=1

ϕ(x + heα)− 2ϕ(x) + ϕ(x− heα)

h2
. (2.2.13)

Note that the range and domain of Lh are a set of grid functions defined on the same grid,

and that grid can be C or N or any of the three subgrids of E or F on which the different

components of vector-valued functions are defined. We will use the notation Lh to denote

the discrete vector Laplacian operator that applies (the appropriately shifted) Lh to each

component of a vector grid function.
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2.2.2.1 Advection

We follow the same treatment of discretization of the advection term as in earlier presen-

tations of the IB method [35]. From the incompressibility of the fluid flow ∇ · u = 0, we can

write the advection term in the skew-symmetric form

[(u · ∇)u]α =
1

2
u · (∇uα) +

1

2
∇ · (uuα), α = 1, 2, 3. (2.2.14)

Let N (u) denote the discretization of Eq. (2.2.14), and we define

[N (u)]α =
1

2
ũ ·G2huα +

1

2
D2h · (ũuα), α = 1, 2, 3, (2.2.15)

where ũ denotes an averaged collocated advective velocity whose components all live on the

same grid as uα. The advective velocity ũ in [35] is obtained by using the same interpolation

scheme as the one used for moving the immersed structure. In our work, we simply take

the average of u on the grid. For example, the three components of ũ in the x-component

equation are

ũ1 = u1(xi− 1
2
,j,k) ,

ũ2 =
u2(xi,j− 1

2
,k) + u2(xi,j+ 1

2
,k) + u2(xi−1,j− 1

2
,k) + u2(xi−1,j+ 1

2
,k)

4
,

ũ3 =
u3(xi,j,k− 1

2
) + u3(xi,j,k+ 1

2
) + u3(xi−1,j,k− 1

2
) + u3(xi−1,j,k+ 1

2
)

4
.

Note that in the y- and z-component equations, we need different averages of u to construct ũ.

We choose to use the wide-stencil operators in Eq. (2.2.15) so that the resulting grid functions

are all defined on the same grid as uα. A more compact discretization of the advection term

has been previously described in [31, 37, 39].
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2.2.2.2 Fluid-Structure Interaction

The immersed structure Γ is discretized by a Lagrangian mesh of M points or markers,

denoted here by a non-italic X = {Xm}Mm=1, and the discrete Lagrangian force densities

defined on the Lagrangian markers are F = {Fm}Mm=1. As discussed in the introduction,

we can extend the notion of velocity interpolation to any point X in the domain, not just

restricted to the Lagrangian markers X, and define a continuous interpolated velocity field

U(X) = (J u)(X). In the conventional IB method, the continuous velocity-interpolation

operator J IB can be defined as

U(X) = (JIBu)(X) :=
∑
x∈F

u(x)δh(x−X)h3. (2.2.16)

We note that the interpolated velocity field given by Eq. (2.2.16) is not generally divergence-

free with respect to the continuum divergence operator1, i.e., generally

(∇ ·U)(X) = −
∑
x∈F

u(x) · (∇δh)(x−X)h3 6= 0, (2.2.17)

even if u is discretely divergence-free with respect to the discrete divergence operator. The

restriction of J to the collection of Lagrangian markers X defines the discrete IB interpolation

operator

(S?[X]u)(X) = (J u)(X). (2.2.18)

We will also develop a new force-spreading operator S[X] that is the adjoint of the new

velocity-interpolation operator S?[X]. Here we use the notation [X] to emphasize that these

linear operators are parametrized by the position of the markers, as will be important when

discussing temporal integration.

1The interpolated velocity given by Eq. (2.2.16) has the same regularity as the regularized delta function
δh which are generally at least C 1 in the IB method, and therefore, the divergence of U is well-defined.
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The discretization of the interaction equations (Eqs. (2.2.3) and (2.2.4)) can be concisely

written in the form

f(x) = (S[X]F) (x), (2.2.19)

U(X) = (S?[X]u) (X), (2.2.20)

where f is the discrete Eulerian force density defined on the appropriate subgrid of F for

each component, and U = {Um}Mm=1 denotes the interpolated velocities at the Lagrangian

markers X. In the conventional IB method, the force-spreading operator SIB and the

velocity-interpolation operator S?IB are simply discrete approximations of the surface and

volume integrals in Eqs. (2.2.3) and (2.2.4), i.e.,

(SIB[X]F)(x) :=
M∑
m=1

Fm δh(x−Xm)∆s, (2.2.21)

(S?IB[X]u)(X) :=
∑
x∈F

u(x)δh(x−X)h3, (2.2.22)

and they are adjoint operators with respect to the power identity (inner product) defined later

in Eq. (2.4.10). Note that Eq. (2.2.22) is a vector equation. For each of the three components

of the equation, the sum x ∈ F is to be understood here and in similar expressions as the

sum over the appropriate subgrid of F. In Eqs. (2.2.21) and (2.2.22), the Dirac delta function

is replaced by a regularized delta function δh to facilitate the coupling between the Eulerian

and Lagrangian grids. In the following section we introduct a new family of regularized

delta functions that have three continuous and yield a substantially improved translational

invariance.
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2.3 A new family of regularized delta functions

In the IB method, the 3D discrete delta function is assumed to be represented by a tensor

product of a single-variable kernel φ(r),

δh(x) =
1

h3
φ
(x1

h

)
φ
(x2

h

)
φ
(x3

h

)
, (2.3.1)

where x1, x2, x3 are the Cartesian components of x and h is the meshwidth. This representation

is not essential, but it significantly simplifies the discussion, since the single-variable kernel

φ(r) is the object of interest. We first require that φ(r) be continuous for all real r and have

compact support, i.e., φ(r) = 0 for |r| ≥ rs, where rs is the radius of support. Continuity of

φ is assumed in order to avoid sudden jumps in the interpolated velocity or applied force as

Lagrangian markers move through the Eulerian grid. It turns out that most IB kernels are

C 1 even though the higher regularity is not explicitly assumed. The reason for that is still a

mystery, but higher regularity of the IB kernel is a nice feature to have in certain applications,

such as the interpolation of derivatives or the spreading of a force dipole. Compact support

of φ is required for computational efficiency.
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The function φ(r) is constructed by requiring a subset of the following moment conditions:

(i) Zeroth moment:
∑
j

φ(r − j) = 1,

(ii) Even-odd:
∑
j even

φ(r − j) =
∑
j odd

φ(r − j) =
1

2
,

(iii) First moment:
∑
j

(r − j)φ(r − j) = 0,

(iv) Second moment:
∑
j

(r − j)2φ(r − j) = K, for some constant K,

(v) Third moment:
∑
j

(r − j)3φ(r − j) = 0.

The motivation of imposing moment conditions is well discussed in [40, 41]. Briefly, the zeroth

moment condition implies that the total force is the same in the Eulerian and Lagrangian

grids when δh is used for force spreading. The even-odd condition implies (i), and was

originally proposed to avoid the “checkerboard” instability that may arise from using a

collocated-grid fluid solver. Liu and Mori [41] generalized this condition to the so called

“smoothing order” condition and showed that it has the effect of suppressing high-frequency

errors and preventing Gibbs-type phenomena. Conservation of total torque relies on the first

moment condition. Moreover, (i) and (iii) guarantee that a smooth function is interpolated

with second-order accuracy when δh is used for interpolation. The second moment condition

with K = 0 and the third moment condition are needed to derive kernels with a higher order

of interpolation accuracy.

In addition to moment conditions, φ(r) is required to satisfy the sum-of-squares condition,

∑
j

(φ(r − j))2 = C, for some constant C. (2.3.2)
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The sum-of-squares condition Eq. (2.3.2) is a weaker version of exact grid translational

invariance,

φ̃(r1, r2) =
∑
j

φ(r1 − j)φ(r2 − j) = Φ(r1 − r2), for all r1, r2. (2.3.3)

In other words, the coupling of φ(r) between any arbitrary two points r1, r2 is a function of

r1− r2 only. However, it can be shown that Eq. (2.3.3) is inconsistent with the assumption of

φ being compactly supported [40]. The sum-of-squares condition does give some information

about the coupling of φ, since it can be deduced from the Cauchy-Schwarz inequality that

∣∣∣φ̃(r1, r2)
∣∣∣ =

∣∣∣∣∣∑
j

φ(r1 − j)φ(r2 − j)

∣∣∣∣∣ ≤ C, for all r1, r2. (2.3.4)

Eq. (2.3.4) guarantees that the coupling between two Lagrangian markers is strongest when

the markers coincide, and furthermore Eq. (2.3.2) implies that the self-coupling is independent

of the marker position.
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In Table 2.1, we list some common IB kernels and the conditions they satisfy. The most

widely used IB kernel is the standard 4-point kernel [40]. The standard 3-point kernel satisfies

the zeroth moment condition but not the even-odd condition. It was first introduced in

an adaptive IB method using the staggered-grid discretization [36]. The standard 6-point

kernel (with K = 0) satisfies all the moment conditions listed above [42]. It can be shown

that the standard 6-point kernel interpolates cubic functions exactly and smooth functions

with fourth-order accuracy. However, as shown in Fig. 2.5, it has a larger deviation from

translational invariance for a pair of markers with distance d ≈ 2.5 even compared to the

standard 4-point kernel. In terms of its defining postulates, our new 6-point kernel differs

from the standard 6-point kernel only in the nonzero second-moment constant K (the sum-

of-squares constant C is determined once K is fixed). The new 5-point kernel assumes the

same postulates as the new 6-point kernel except for the “even-odd” condition.

The special choice of K given in Eq. (2.3.16) and Eq. (2.3.19) lead to new 5-point and

6-point kernels that are C 3 and significantly improve translational invariance compared with

other IB kernels. The construction of an IB kernel with a positive and constant second

moment K was originally motivated by the important physical implication of the second

moment in particle suspensions, namely it is associated with the quadrupole correction in

the Faxén relation for a rigid sphere in an arbitrary Stokes flow [43]. The result that the

new kernels have three continuous derivatives is unexpected, however, this makes the new
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kernel more generally useful. By applying a smoothing technique to the standard IB kernels,

Yang, et al. [44] developed a family of C 2 IB kernels whose first derivative satisfies up to

the second moment condition for the derivative. They showed that these derivative moment

conditions are intrinsically linked to the error of force spreading in the IB scheme, and IB

kernels that satisfy these conditions can significantly reduce non-physical spurious oscillations

of force spreading in moving-boundary problems. By differentiating the moment conditions

satisfied by φ(r), we can verify that the derivative of our new C 3 kernels satisfy up to third

moment conditions as advocated by Yang et al. [44]. We will also include the smoothed

3-point and 4-point kernels in the comparison of translational invariance in Sec. 2.3.2. Liu

and Mori developed a MATLAB routine that automatically generates all the standard IB

kernels as well as many others [41]. We have also made our MATLAB codes for generating

the new kernels available at https://github.com/stochasticHydroTools/IBMethod.

2.3.1 Two new kernels

2.3.1.1 A new 5-point kernel

Our new 5-point kernel satisfies the sum-of-squares condition Eq. (2.3.2) and the moment

conditions (i), (iii)-(v), but it does not satisfy the even-odd condition (ii). The support is

defined to be five grid points, i.e., rs = 5
2
. We follow a similar derivation of the standard

4-point kernel [40]. By first restricting r ∈
[
−1

2
, 1

2

]
, we have 5 unknowns:

{φ(r − 2), φ(r − 1), φ(r), φ(r + 1), φ(r + 2)} . (2.3.5)
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Note that the moment conditions (i), (iii)-(v) are four linear equations in these five unknowns,

and we can express all the other four unknowns in terms of φ(r),

φ(r − 2) =
1

12

(
2φ(r) + 3Kr + 2K + r3 + 2r2 − r − 2

)
, (2.3.6)

φ(r − 1) =
1

6

(
−4φ(r)− 3Kr −K − r3 − r2 + 4r + 4

)
, (2.3.7)

φ(r + 1) =
1

6

(
−4φ(r) + 3Kr −K + r3 − r2 − 4r + 4

)
, (2.3.8)

φ(r + 2) =
1

12

(
2φ(r)− 3Kr + 2K − r3 + 2r2 + r − 2

)
. (2.3.9)

For the special value r = 1/2 so that φ
(

5
2

)
= 0, we get

{
φ

(
−3

2

)
, φ

(
−1

2

)
, φ

(
1

2

)
, φ

(
3

2

)}
=

{
1

16
(4K − 1),

1

16
(9− 4K),

1

16
(9− 4K),

1

16
(4K − 1)

}
.

(2.3.10)

Substituting these values into the sum of squares condition Eq. (2.3.2), we obtain an expression

for C(K),

C(K) =
1

128
(9− 4K)2 +

1

128
(4K − 1)2, (2.3.11)

where the value of K remains to be determined. Next we solve the quadratic equation of φ(r)

from the sum-of-squares condition Eq. (2.3.2) by using Eqs. (2.3.6) to (2.3.9) and Eq. (2.3.11),

φ(r) =
1

280

(
−40K − 40r2 + 136 +

√
2β(r) + 2γ(r)

)
, (2.3.12)

where

β(r) = −12600K2r2 + 3600K2 − 8400Kr4 + 25680Kr2 − 6840K + 3123, (2.3.13)

γ(r) = −40r2
(
35r4 − 202r2 + 311

)
. (2.3.14)
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We note that the positive square root is chosen in Eq. (2.3.12) because of the continuity

assumption of φ, i.e., by setting r = 1
2
, we select the branch that gives φ

(
1
2

)
= 1

16
(9− 4K) as

in Eq. (2.3.10).

We have the freedom to choose K to construct φ with higher regularity. A symbolic

calculation in Mathematica matching derivatives of φ(r) at r = 1
2

reveals that for any

K ∈
[
0, 21

20

)
, φ ∈ C 1. For the second derivative to be continuous at r = 1

2
, K must satisfy

720K2 − 912K + 275 = 0. (2.3.15)

We can verify (by plotting) that exactly one of the two roots of Eq. (2.3.15) guarantees that

β(r) + γ(r) ≥ 0, so that φ(r) is real-valued for r ∈
[

1
2
, 1

2

]
, and this special value of K is

K =
1

60

(
38−

√
69
)
. (2.3.16)

If we proceed further with matching the third derivative to be continuous at r = 1
2
, then K

must satisfy

60480K3 − 116208K2 + 73260K − 15125 = 0, (2.3.17)

whose roots are

K =

{
55

84
,

1

60

(
38 +

√
69
)
,

1

60

(
38−

√
69
)}

. (2.3.18)

We observe that our choice of K in Eq. (2.3.16) is among the roots of the third derivative

matching condition, and therefore, it also makes the third derivative of φ continuous at r = 1
2
.

Remarkably, the derivative matching conditions at r = 1
2

are sufficient to ensure that

φ ∈ C 3 everywhere. Existence and continuity of derivatives was never assumed a priori,
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but was only a consequence of an appropriate choice of K. Moreover, note that for K ∈[
0, 1

60

(
38−

√
69
))

, we have φ′′
(

5
2

)
< 0. Since φ

(
5
2

)
= φ′

(
5
2

)
= 0, this implies that φ(r) takes

negative values in a neighborhood of r = 5
2
. We emphasize that the special choice of K given

by Eq. (2.3.16) is the smallest positive K for which φ is non-negative, and it is also the only

value of K that gives three continuous derivatives of φ.

2.3.1.2 A new 6-point kernel

Our new 6-point kernel satisfies the sum-of-squares condition Eq. (2.3.2) and the moment

conditions (ii)-(v) (and therefore (i)) with the second-moment constant

K =
59

60
−
√

29

20
. (2.3.19)

The derivation of this kernel follows a nearly identical procedure to that of the new 5-point

kernel. First, the sum-of-squares constant C can be expressed in terms of K by considering

the special case r = 0. Next, by restricting r to the interval [0, 1], we have 6 unknowns:

φ(r − 3), φ(r − 2), φ(r − 1), φ(r), φ(r + 1), φ(r + 2) and 6 equations (the even-odd condition

accounts for two equations). By expressing all the other unknowns in terms of φ(r− 3) using

(ii)-(v), we can solve for φ(r − 3) from the quadratic equation determined by Eq. (2.3.2).

The continuity assumption of φ is now used to select the appropriate root to piece together

a continuous function, i.e., by setting r = 0, we select the root that gives φ(−3) = 0. As

mentioned earlier, φ being C 1 follows implicitly from our defining postulates, i.e., φ′(−3) = 0.

We have the freedom to choose K so that φ′′(−3) = 0, which uniquely determines the special

value Eq. (2.3.19). The formula for the new 6-point kernel is given by

β(r) =
9

4
− 3

2
(K + r2)r + (

22

3
− 7K)r − 7

3
r3 , (2.3.20)

γ(r) = − 11

32
r2 +

3

32
(2K + r2)r2+
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1

72

(
(3K − 1)r + r3

)2
+

1

18

(
(4− 3K)r − r3

)2
, (2.3.21)

φ(r − 3) =
−β(r) + sgn

(
3
2
−K

)√
β2(r)− 112γ(r)

56
, (2.3.22)

φ(r − 2) = − 3φ(r − 3)− 1

16
+
K + r2

8
+

(3K − 1)r

12
+
r3

12
, (2.3.23)

φ(r − 1) = 2φ(r − 3) +
1

4
+

(4− 3K)r

6
− r3

6
, (2.3.24)

φ(r) = 2φ(r − 3) +
5

8
− K + r2

4
, (2.3.25)

φ(r + 1) = − 3φ(r − 3) +
1

4
− (4− 3K)r

6
+
r3

6
, (2.3.26)

φ(r + 2) = φ(r − 3)− 1

16
+
K + r2

8
− (3K − 1)r

12
− r3

12
. (2.3.27)

Note that, in the formula presented above, r ∈ [0, 1]. The new 5-point and 6-point kernels

are Gaussian-like function, as shown in Fig. 2.2 and Fig. 2.3, and they both have three

continuous derivatives. As a comparison, the standard 3-point, 4-point, 6-point kernels and

their continuous first derivative are plotted in Fig. 2.4. We notice that the new 5-point and

6-point kernels are non-negative for all r, whereas the standard 6-point kernel has negative

tails.

2.3.2 Tests for translational invariance

In this section, we demonstrate a significant improvement in the translational invariance2

of our new 6-point kernel. We randomly select 105 pairs of Lagrangian markers X1,X2 in a

periodic box [0, 32]3 with meshwidth h = 1 and compute the 3D generalization of Eq. (2.3.3),

δ̃(X1,X2) =
∑
x∈gh

δh(x−X1) δh(x−X2), (2.3.28)

2The test that we use actually checks for rotational invariance at the same time, since it involves the
Euclidean distance between a pair of markers, and not merely the vector from one marker to the other.
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Fig. 2.2: (a) The new 5-point kernel compared with the Gaussian with the second moment
given by Eq. (2.3.16). (b) The first three derivatives of the new 5-point kernel.
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Fig. 2.3: (a) The new 6-point kernel compared with the Gaussian with the second moment
given by Eq. (2.3.19). (b) The first three derivatives of the new 6-point kernel.
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Fig. 2.4: (a) The standard 3-point, 4-point, and 6-point kernels. (b) The first derivatives of
the standard 3-point, 4-point, and 6-point kernels.

where x denotes a grid point on the Eulerian grid gh. In Fig. 2.5, we plot δ̃(X1,X2) normalized

by the constant C3 from Eq. (2.3.2), versus the distance d = |X1 −X2|. The data are binned

according to d = |X1 −X2|, and error-bars showing the maximum, mean and minimum of

each bin are overlaid with the data. If an IB kernel were exactly translation-invariant, the

plot of δ̃(X1,X2) would be a curve. The spreading pattern in the data around this curve

clearly indicates that none of the IB kernels compared here are exactly translation-invariant,

but gives a qualitative picture of how close to translational invariance each kernel is. The

data of the new IB kernels and the smoothed 4-point kernel almost form a curve, while the

data of the other kernels have larger deviations from the mean. Moreover, the deviation in

the data of the new IB kernels is uniform for all distances, but the standard 6-point kernel

has a much larger deviation for d ≈ 2.5. For a more quantitative comparison, we summarize

the maximum standard deviation of all bins for each IB kernel in Table 2.2. The maximum

standard deviation of the new IB kernels is an order of magnitude smaller than that of the

standard IB kernels, and is about half of the deviation of the smoothed 4-point kernel.
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Fig. 2.5: Normalized δ̃(X1,X2) is plotted versus d = |X1 −X2| for 105 pairs of randomly
selected Lagrangian markers. The data are binned according to d = |X1−X2| and error-bars
showing the maximum, mean and minimum of each bin are overlaid with the data. The
deviation in the data gives a quantitative measure of translational invariance of an IB kernel.
The standard deviation in the data for the new 6-point kernel (blue) is an order of magnitude
smaller than for the standard IB kernels. (a) The standard 6-point kernel vs. the new 5-point
kernel vs. the new 6-point kernel. (b) The standard 3-point kernel vs. the standard 4-point
kernel. (c) The smoothed 3-point kernel vs. the smoothed 4-point kernel.
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In terms of computational cost, we summarize the computation time of δ̃(X1,X2) for 105

pairs of Lagrangian markers using the kernels we have compared. The timings are based

on simulations performed on a desktop with Intel Core i7-4770 CPU 3.40GHz under the

MATLAB environment. The main cost of using an IB kernel in spreading/interpolation

depends on its support size. In Table 2.2, the new 5-point kernel is about two times more

expensive, and the new 6-point kernel is about three-to-four times more expensive than a

4-point kernel in our comparison, because the new 5-point and 6-point kernels communicate

with 125 and 216 nearby grid points respectively in spreading/interpolation in 3D, while

a 4-point kernel only communicates with 64 nearby grid points. The smoothed 3-point

and 4-point kernels are more expensive than their standard counterparts in that they have

wider supports as shown in Table 2.1. In all respects, the new IB kernels achieve significant

improvement in grid translational invariance with a modest increase in computational cost.

Standard Smoothed Standard Smoothed Standard New New
3-point 3-point 4-point 4-point 6-point 5-point 6-point

maximum
0.0428 0.0212 0.0168 0.0083 0.0296 0.0051 0.0042

std. dev.
computation

6.34s 9.52s 9.01s 12.06s 31.19s 17.54s 30.86s
time

Table 2.2: Maximum standard deviation of δ̃(X1,X2) over all bins for various IB kernels, and
the computation time for computing δ̃(X1,X2) for 105 markers.

2.4 Divergence-free velocity interpolation and force spread-

ing

This section presents the two main contributions of this chapter: divergence-free velocity

interpolation and force spreading. Familiarity with discrete differential operators on staggered

grids and with some discrete vector identities, reviewed and summarized in 2.8, will facilitate
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the reading of this section.

2.4.1 Divergence-free velocity interpolation

Here we introduce a new recipe for constructing an interpolated velocity field U(X) =

(J u)(X) that is continuously divergence-free with respect to the continuum divergence

operator, i.e., (∇ · U)(X) = 0 for all X. For now we drop the dependence on time and

emphasize again that X is an arbitrary position in the domain Ω ⊂ R3, not just on the

Lagrangian structure Γ. The main idea is first to construct a discrete vector potential a(x)

that is defined on the edge-centered staggered grid E, and then to apply the conventional IB

interpolation to a(x) to obtain a continuum vector potential A(X), so that the Lagrangian

velocity defined by U(X) = (∇×A)(X) is automatically divergence-free.

Suppose the discrete velocity field u(x) is defined on F and is discretely divergence-free,

i.e., Dh · u = 0. Let u0 be the mean of u(x),

u0 =
1

V

∑
x∈F

u(x)h3, (2.4.1)

where V =
∑

x∈F h
3 is the volume of the domain. Using the Helmholtz decomposition, we

construct a discrete velocity potential a(x) for x ∈ E that satisfies

 Dh × a = u− u0,

Dh · a = 0,
(2.4.2)

where the requirement that a(x) is discretely divergence-free is an arbitrary gauge condition

that makes a(x) uniquely defined up to a constant. If the gauge condition of a(x) is omitted

in Eq. (2.4.2), then the discrete velocity potential a(x) is only uniquely defined up to Ghψ,

where ψ is some unknown scalar grid function defined on N. Note that Dh · a is a scalar field
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defined on N. In 2.9, we prove that the discrete vector potential a(x) defined by Eq. (2.4.2)

exists (see Theorem 3). To determine a(x) explicitly, we take the discrete curl of the first

equation in Eq. (2.4.2) and use the identity Eq. (2.8.3) with the gauge condition of a(x),

which leads to a vector Poisson equation for a(x),

−Lh a = Dh × u, (2.4.3)

that can be efficiently solved. Note that the solution of the Poisson problem Eq. (2.4.3)

determines a(x) up to an arbitrary constant (it is not necessary to uniquely determine a(x)

because the constant term vanishes upon subsequent differentiation).

The next step is to interpolate the discrete vector potential a(x) to obtain the continuum

vector potential

A(X) =
∑
x∈E

a(x) δh(x−X)h3. (2.4.4)

Lastly, we take the continuum curl of A(X) with respect to X,

(∇×A)(X) =
∑
x∈E

a(x)× (∇δh)(x−X)h3, (2.4.5)

and our new interpolation is completed by adding the mean flow u0, that is,

U (X) = (J u)(X) = u0 +
∑
x∈E

a(x)× (∇δh)(x−X)h3. (2.4.6)

We note that the interpolation Eq. (2.4.4) is not performed in the actual implementation of the

scheme. Instead, ∇δh is computed on the edge-centered staggered grid E in Eq. (2.4.6). Notice

that, by construction, the interpolated velocity in Eq. (2.4.6) is continuously divergence-free.

There are two important features of our new interpolation scheme that are worth mention-

ing. First, in comparison to locally interpolating the velocity from the nearby fluid grid in the
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conventional IB method, our new interpolation scheme is non-local, in that it involves solving

the discrete Poisson problem Eq. (2.4.3). Second, if the regularized delta function δh is C k,

we note that the interpolated velocity field given by Eq. (2.4.6) is a globally-defined function

that is C k−1. We can think of the regularized delta function concentrated at X as being

defined everywhere with zero outside a cube of fixed edge length (e.g. 6h for the C 3 6-point

kernel [7]). Moreover, the continuity of derivatives of δh also applies globally, including at

the edges for the cube. Since the continuum vector potential defined by Eq. (2.4.4) is a

finite sum of such C k functions, and the interpolated velocity field U(X) is obtained by

differentiating A(X) once, then the resulting interpolated velocity field must have k − 1

continuous derivatives. Note that if we use an IB kernel that is C 1, then the interpolated

velocity U is C 0, and ∇ ·U is defined in only a piecewise manner. This naturally brings

into question whether the volume of a closed surface is strictly conserved as the surface

passes over the discontinuity of the velocity derivatives. Indeed, we observe numerically that

the DFIB method offers only marginal improvement in volume conservation for C 1 kernel

functions, such as the standard 4-point kernel [10], unless the Lagrangian mesh is discretized

with impractically high resolution (8 markers per fluid meshwidth, see Fig. 2.9). By contrast,

we will show that with only a moderate Lagrangian mesh size (1 to 2 markers per fluid

meshwidth), the DFIB method offers a substantial improvement in volume conservation for

kernels of higher smoothness, which gives a continuously differentiable interpolated velocity

U . Further, we observe that volume conservation of the DFIB method improves with the

smoothness of the interpolated velocity field.

In addition to the standard 4-point kernel (denoted by φ4h), the IB kernels considered

in this chapter include the C 3 5-point and 6-point kernels [7] (denoted by φnew
5h and φnew

6h
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respectively), and the C 2 4-point B-spline kernel [45],

φB4h(r) =



2
3
− r2 + 1

2
r3 0 ≤ |r| < 1,

4
3
− 2r + r2 − 1

6
r3 1 ≤ |r| < 2,

0 |r| ≥ 2,

(2.4.7)

and the C 4 6-point B-spline kernel,

φB6h(r) =



11
20
− 1

2
r2 + 1

4
r4 − 1

12
r5 0 ≤ |r| < 1,

17
40

+ 5
8
r − 7

4
r2 + 5

4
r3 − 3

8
r4 + 1

24
r5 1 ≤ |r| < 2,

81
40
− 27

8
r + 9

4
r2 − 3

4
r3 + 1

8
r4 − 1

120
r5 2 ≤ |r| < 3,

0 |r| ≥ 3.

(2.4.8)

These B-spline kernels are members of a sequence of functions obtained by recursively

convolving each successive kernel function against a rectangular pulse (also known as the

window function), starting from the window function itself [45]. The limiting function in

this sequence is a Gaussian [46], which is exactly translation-invarant and isotropic. The

family of IB kernels with nonzero even moment conditions, such as φ4h and φnew
6h , also have a

Gaussian-like shape, but it is not currently known whether this sequence of functions also

converges to a Gaussian.

2.4.2 The force-spreading operator

The force-spreading operator S is constructed to be adjoint to the velocity-interpolation

opeartor S? so that energy is conserved by the Lagrangian-Eulerian interaction,

(u,SF)x = (S?u,F)X, (2.4.9)
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where (·, ·)x and (·, ·)X denote the corresponding discrete inner products on the Eulerian

and Lagrangian grids. In other words, the power generated by the elastic body forces is

transferred to the fluid without loss,3

∑
x∈F

u(x) · f(x)h3 =
M∑
m=1

Um · Fm∆s, (2.4.10)

where Um is the Lagrangian marker velocity at Xm, and Fm∆s is the Lagrangian force

applied to the fluid by the Lagrangian marker Xm. Our goal is to find an Eulerian force

density f(x) that satisfies the power identity Eq. (2.4.10). To see what Eq. (2.4.10) implies

about f(x), we rewrite both sides in terms of a(x). On the left-hand side of Eq. (2.4.10), we

use Eq. (2.4.2) to obtain

∑
x∈F

u(x) · f(x)h3 = u0 ·
∑
x∈F

f(x)h3 +
∑
x∈F

(Dh × a)(x) · f(x)h3

= u0 · f0V +
∑
x∈E

a(x) · (Dh × f)(x)h3, (2.4.11)

where the average of f(x) over the domain is

f0 =
1

V

∑
x∈F

f(x)h3. (2.4.12)

Note that we have used the summation-by-parts identity Eq. (2.8.5) to transfer the discrete

curl operator Dh× from a(x) to f(x), and thus, the grid on which the summation is performed

in Eq. (2.4.11) is E not F. On the the right-hand side of Eq. (2.4.10), we substitute for Um

by using the divergence-free velocity interpolation Eq. (2.4.6),

M∑
m=1

Um · Fm∆s = u0 ·
M∑
m=1

Fm∆s +
M∑
m=1

∑
x∈E

a(x)× (∇δh)(x−Xm) · (Fm∆s)h3

3Here and in similar expressions,
∑

x∈F u(x) · f(x)h3 is a shorthand for
∑3

i=1

∑
x∈F ui(x)fi(x)h3.
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= u0 ·
M∑
m=1

Fm∆s +
∑
x∈E

a(x) ·
M∑
m=1

(∇δh)(x−Xm)× (Fm∆s)h3. (2.4.13)

Since u0 and a(x) are arbitrary (except for Dh · a = 0), the power identity Eq. (2.4.10) is

satisfied if and only if

f0 =
1

V

M∑
m=1

Fm∆s (2.4.14)

and

Dh × f =
M∑
k=1

(∇δh)(x−Xm)× (Fm∆s) + Ghϕ, for all x ∈ E, (2.4.15)

where ϕ is an arbitrary scalar field that lives on the node-centered grid N. Note that we have

the freedom to add the term Ghϕ in Eq. (2.4.15), since from the identity Eq. (2.8.4) and

Dh · a = 0, we have

∑
x∈E

a(x) ·
(
Ghϕ

)
h3 = −

∑
x∈N

(
Dh · a

)
(x)ϕ(x)h3 = 0.

Indeed, we are required to include this term since the left-hand side of Eq. (2.4.15) is discretely

divergence-free but there is no reason to expect the first term on the right-hand side of

Eq. (2.4.15) is also divergence-free. Note that it is not required to find ϕ in order to determine

f(x), because we can eliminate ϕ by taking the discrete curl on both sides of Eq. (2.4.15),

Dh × (Dh × f) = Dh ×

(
M∑
m=1

(∇δh)(x−Xm)× (Fm∆s)

)
, for all x ∈ E. (2.4.16)

By imposing the gauge condition

Dh · f = 0, (2.4.17)
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we obtain a vector Poisson equation for f(x),

−(Lh f)(x) = Dh ×

(
M∑
m=1

(∇δh)(x−Xm)× (Fm∆s)

)
, for all x ∈ E. (2.4.18)

Note again that ∇δh is computed on E, so that the cross-product with Fm is face-centered,

which agrees with the left-hand side of Eq. (2.4.18). Note that the solution of Eq. (2.4.18) can

be uniquely determined by the choice of f0. Like our velocity interpolation scheme, the new

force-spreading scheme is also non-local because it requires solving discrete Poisson equations.

We remark that the new force-spreading scheme is also constructed so that the resulting

force density f(x) is discretely divergence-free. This means that f(x) includes the pressure

gradient that is generated by the Lagrangian forces. We do not see a straightforward way to

separate the pressure gradient from f(x) in case it is needed for output purposes.

2.5 Time-stepping scheme

The spatially-discretized equations of motion are

ρ

(
du

dt
+N (u)

)
+ Ghp = µLhu + S[X]F, (2.5.1)

Dh · u = 0, (2.5.2)

dX

dt
= U(X, t) = S?[X]u. (2.5.3)

In this section, we present a second-order time-stepping scheme, similar to the ones developed

previously [16], that evolves the spatially-discretized system Eqs. (2.5.1) to (2.5.3). Let

un,Xn denote the approximations of the fluid velocity and Lagrangian marker velocities at

time tn = n∆t. To advance the solutions to un+1 and Xn+1, we perform the following steps:

1. First, update the Lagrangian markers to the intermediate time step n + 1
2

using the
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interpolated velocity,

X̃n+ 1
2 = Xn +

∆t

2
S? [Xn] un. (2.5.4)

2. Evaluate the intermediate Lagrangian force density at X̃n+ 1
2 from the force density

functional or the energy functional, and spread it to the Eulerian grid using the

force-spreading scheme to get

fn+ 1
2 = S

[
X̃n+ 1

2

]
Fn+ 1

2 . (2.5.5)

3. Solve the fluid equations on the periodic grid [35],


ρ

(
un+1 − un

∆t
+ Ñn+ 1

2

)
+ Ghpn+ 1

2 = µLh

(
un+1 + un

2

)
+ fn+ 1

2 ,

Dh · un+1 = 0,

(2.5.6)

where the second-order Adams-Bashforth (AB2) method is applied to approximate the

nonlinear advection term

Ñn+ 1
2 =

3

2
Nn − 1

2
Nn−1, (2.5.7)

and Nn = N (un).

4. In the last step, update the Lagrangian markers Xn+1 by using the mid-point approxi-

mation

Xn+1 = Xn + ∆t S?
[
X̃n+ 1

2

](un+1 + un

2

)
. (2.5.8)

Note that the time-stepping scheme described above requires two starting values because of

the treatment of the nonlinear advection term using the AB2. To get the starting value at
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# of scalar Poisson solves # of scalar interpolation/spreading

2D 3D 2D 3D

DFIB IBMAC DFIB IBMAC DFIB IBMAC DFIB IBMAC

S? in Eq. (2.5.4) 1 - 3 - 2 2 6 3

S in Eq. (2.5.5) 2 - 3 - 2 2 6 3

Fluid solver 3 3 4 4 - - - -

S? in Eq. (2.5.8) 1 - 3 - 2 2 6 3

Total 7 3 13 4 6 6 18 9

Table 2.3: Cost of DFIB versus IBMAC in terms of the number of scalar Poisson solves and
interpolation/spreading of a scalar from/to the Eulerian grid.

t = ∆t, we can use the second-order Runge-Kutta (RK2) scheme described in [10, 35].

In Table 2.3 we compare the cost of DFIB and IBMAC for the above IB scheme in terms

of the number of the two cost-dominating procedures: the scalar Poisson solver which costs

O(Nd logN) using FFT on the periodic domain, where d ∈ {2, 3} is the spatial dimension,

and spreading/interpolation of a scalar field between the Eulerian grid and the Lagrangian

mesh which costs O(M). In summary, DFIB is only more expensive than IBMAC by 4

scalar Poisson solves for two-dimensional (2D) problems, and is more expensive by 9 scalar

Poisson solves and 9 scalar interpolation and spreading for three dimensional (3D) problems.

Therefore, the DFIB method is about two times slower than IBMAC per time step in 3D. We

point out that if the RK2 scheme [10, 35] is employed rather than the scheme above, then we

can save one interpolation step per time step, but the fluid equations need to be solved twice.

2.6 Numerical Results

This section presents numerical results of the DFIB method for various benchmark

problems in 2D and 3D. We first consider in 2D a thin elastic membrane subject to surface

tension of the membrane only. The continuum solution of this simple 2D problem has the
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special feature that the tangential component of the elastic force vanishes, and therefore,

the normal derivative of the tangential fluid velocity does not suffer any jump across the

immersed boundary. This has the effect that second-order convergence in the fluid velocity

u and the Lagrangian deformation map X can be achieved [25]. In the second set of tests,

we compare volume conservation in 2D, i.e., area conservation of DFIB and IBMAC by

applying them to a circular membrane under tension, and we discuss the connection between

area conservation and the choice of Lagrangian marker spacing relative to the Eulerian grid

size. In the third set of computations, we apply the DFIB method to a problem in which a

2D elastic membrane actively evolves in a parametrically-forced system. In the last set of

numerical experiments, we extend the surface tension problem to 3D, and compare volume

conservation of DFIB with that of IBMAC.

2.6.1 A thin elastic membrane with surface tension in 2D

It is well-known that the solutions to problems involving an infinitely thin massless

membrane interacting with a viscous incompressible fluid possess jump discontinuities across

the interface in the pressure and in the normal derivative of the velocity due to singular

forcing at the interface [28, 47]. These sharp jump discontinuities cannot be fully resolved

by the conventional IB method because of the use of the regularized delta function at the

interface. Consequently, the numerical convergence rate for the Lagrangian deformation map

X is generally only first order even if the discretization is carried out with second-order

accuracy. To achieve the expected rate of convergence, we consider problems with solutions

that possess sufficient smoothness.

As a simple benchmark problem with a sufficiently smooth continuum solution we consider

a thin elastic membrane that deforms in response to surface tension only. Suppose that the

elastic interface Γ is discretized by a collection of Lagrangian markers X = {X1, . . . ,XM}.
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The discrete elastic energy functional associated with the surface tension of the membrane is

the total (polygonal) arc-length of the interface [20],

E[X1, . . . ,XM ] = γ
M∑
m=1

|Xm −Xm−1| , (2.6.1)

where X0 = XM and γ is the surface tension constant (energy per unit length). The

Lagrangian force generated by the energy functional at the marker Xm is

Fm∆s = − ∂E

∂Xm

= γ

(
Xm+1 −Xm

|Xm+1 −Xm|
− Xm −Xm−1

|Xm −Xm−1|

)
. (2.6.2)

In our tests, we set the initial configuration of the membrane to be the ellipse

X (s, 0) = L ·
(

1

2
+

5

28
cos(s),

1

2
+

7

20
sin(s)

)
, s ∈ [0, 2π]. (2.6.3)

The Eulerian fluid domain Ω = [0, L]2 is discretized by a uniform N × N Cartesian grid

with meshwidth h = L
N

in each direction. The elastic interface Γ is discretized by a uniform

Lagrangian mesh of size M = dπNe in the Lagrangian variable s, so that the Lagrangian

markers X = {X1, . . . ,XM} are physically separated by a distance of approximately h
2

in the

equilibrium circular configuration. In all of our tests, we set L = 5, ρ = 1, γ = 1, µ = 0.1.

The time step size is chosen to be ∆t = h
2

to ensure the stability of all simulations up to

t = 20 when the elastic interface is empirically observed to be in equilibrium.

We denote by uN (t) the computed fluid velocity field and by I2N→N a restriction operator

from the finer grid of size 2N × 2N to the coarser grid of size N ×N . The discrete lp-norm

of the successive error in the velocity component ui is defined by

εNp,u,i(t) =
∥∥uNi (t)− I2N→Nu2N

i (t)
∥∥
p
. (2.6.4)
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To avoid artifacts in the error-norm computation because of Lagrangian markers getting too

clustered during the simulation, we reparametrize the interface (for the purpose of the error

computation only) from the computed markers using periodic cubic splines after each time

step, and compute the lp-norm error of X based on a collection of M ′ uniformly sampled

markers X̃ from the reparametrized interface, that is,

εNp,X(t) =
∥∥∥X̃N(t)− X̃2N(t)

∥∥∥
p
, (2.6.5)

where M ′ does not change with N . We emphasize that the resampled markers are only used

to compute the error norm and are discarded after each time step. In Fig. 2.6 the successive

l∞-norm and l2-norm errors of the x, y-component of the fluid velocity and of the deformation

map are plotted as a function of time from t = 0 to t = 20 for grid resolution N = 64, 128

and 256. The number of resampled markers for computing εNp,X(t) is M ′ = 128. To clearly

visualize that second-order convergence is achieved by our scheme, we multiply the computed

errors for the finer grid resolution N = 128 and 256 by a factor of 4 and 42 respectively,

and plot them along with errors for the coarser grid resolution N = 64 in Fig. 2.6. The

observation that all three error curves almost align with each other (as shown in Fig. 2.6)

confirms that second-order convergence in u and X is achieved.

vo

2.6.2 Area conservation and IB marker spacing

As an immediate consequence of fluid incompressibility, the volume enclosed by a closed

immersed boundary should be exactly conserved as it deforms and moves with the fluid.

However, it is observed that even in the simplest scenario of a pressurized membrane in its

circular equilibrium configuration [31], the volume error of an IB method with conventional

interpolation and spreading systematically grows at a rate proportional to the pressure jump
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Fig. 2.6: Rescaled l∞-norm (top panel) and l2-norm (bottom panel) errors of the x, y-
component of the fluid velocity defined by Eq. (2.6.4), and errors of the Lagrangian deformation
map defined by Eq. (2.6.5) for the 2D surface tension problem are plotted as a function of
time from t = 0 to t = 20. The left and middle columns show errors of the fluid velocity
components and the right column shows errors of the Lagrangian deformation map. The
Eulerian grid sizes are N = 64, 128, 256 and the corresponding Lagrangian mesh sizes are
M = 202, 403, 805, so that the spacing between two Lagrangian markers is kept at a distance
of approximately h

2
in the equilibrium configuration. For the finer grid resolution N = 128, 256,

the errors in each norm are multiplied by a factor of 4 and 42 respectively. After rescaling, the
error curves of the finer grid resolution almost align with the error curves of grid resolution
N = 64, which indeed confirms that second-order convergence in u and X is achieved. For
this set of computations, we use the C 3 6-point IB kernel in the discrete delta function, and
the time step size is chosen to be ∆t = h

2
.
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across the elastic interface [26]. In this set of tests, we demonstrate that, the “volume” or

area enclosed by a 2D membrane is well-conserved by the DFIB method when the Lagrangian

interface is sufficiently resolved.

We follow the same problem setup as in the test described in [31]. A thin elastic membrane

X (s, t), initially in a circular equilibrium configuration,

X (s, 0) =

(
1

2
+

1

4
cos(s),

1

2
+

1

4
sin(s)

)
, s ∈ [0, 2π], (2.6.6)

is immersed in a periodic unit cell Ω = [0, 1]3 with zero initial background flow. The

Lagrangian force density on the interface is described by

F (s, t) = κ
∂2X
∂s2

, (2.6.7)

in which κ is the uniform stiffness coefficient. The elastic membrane is discretized by a

uniform Lagrangian mesh of M points in the variable s. We approximate the Lagrangian

force density by

Fm =
κ

(∆s)2
(Xm+1 − 2Xm + Xm−1), (2.6.8)

which corresponds to a collection of Lagrangian markers connected by linear springs of zero

rest length with stiffness κ. For this problem, since the elastic interface is initialized in the

equilibrium configuration with zero background flow, any spurious fluid velocity and area

loss incurred in the simulation are regarded as numerical errors.

In our simulations, we set ρ = 1, µ = 0.1, κ = 1. The size of the Eulerian grid is fixed at

128× 128 with meshwidth h = 1
128

. The size of the Lagrangian mesh M is chosen so that two

adjacent Lagrangian markers are separated by a physical distance of hs in the equilibrium

configuration, that is, M ≈ 2πR/hs, where R is the radius of the circular membrane. In

addition to the Lagrangian markers, we also include a dense collection of passive tracers with
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Ntracer = 20M to address the limiting case of moving the entire interface. These tracers are

initially in the same configuration as the circular membrane in Eq. (2.6.6), and they move

passively with the interpolated velocity according to Eqs. (2.5.4) and (2.5.8). The time step

size is set to be ∆t = h
4

for stability. In all computations, we use the C 3 6-point IB kernel

φnew
6h to form the regularized delta function δh.

In Fig. 2.7 we compare the computational results of DFIB with those of IBMAC for

different hs = 4h, 2h, h and h
2

(from left to right in Fig. 2.7). Each subplot of Fig. 2.7 shows

a magnified view of the same arc of the circular interface along with its nearby spurious fluid

velocity field. The interface represented by the Lagrangian markers X(t = 1) is shown in red

and the initial configuration X(t = 0) is shown in the blue curve. The interface represented

by the passive tracers Xtracer(t = 1) is shown in the yellow curve. In the first column of

Fig. 2.7 in which hs = 4h, we see that the maximum spurious velocity ‖u‖∞ of IBMAC is of

the same magnitude as that of DFIB. At such coarse resolution in the Lagrangian mesh, fluid

apparently leaks through the gap between two adjacent markers, as can be observed by the

wiggly pattern in the passive tracers. As the the Lagrangian mesh is refined gradually from

hs = 4h to h
2

(from left to right in Fig. 2.7), we see that ‖u‖∞ decreases from 10−3 to 10−7 in

the DFIB method, whereas ‖u‖∞ stops improving around 10−4 in IBMAC. Moreover, in the

columns where hs = 2h, h, h
2
, we see a clear global pattern in the spurious velocity field in

IBMAC, while the spurious velocity field of DFIB appears to be much smaller in magnitude

and random in pattern.

We define the normalized area error with respect to the initial configuration

∆A(t; X) :=
|A(t; X)− A(0; X)|

A(0; X)
, (2.6.9)

where the area enclosed by the Lagrangian markers A(t; X) is approximated by the area

of the polygon formed by the Lagrangian markers X = {X1, . . . ,XM} at time t. Fig. 2.8
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Fig. 2.7: A magnified view of the quasi-static circular membrane and its nearby spurious
velocity field for different Lagrangian mesh spacing hs = 4h, 2h, h and h

2
, as indicated below

each figure panel, while keeping h = 1
128

fixed. The top panel (a) shows the computational
results from IBMAC, and the bottom panel (b) shows the results from DFIB. The interface
represented by the Lagrangian markers X(t = 1) is shown in red, the initial configuration
X(t = 0) is shown in blue, and the interface represented by Ntracer = 20M passive tracers is
shown in yellow, where M is the number of Lagrangian markers. The time step size is set to
be ∆t = h

4
for stability. In the above computations, the C 3 6-point IB kernel φnew

6h is used in
IBMAC and DFIB.
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and Fig. 2.9 show the normalized area errors defined by Eq. (2.6.9) for DFIB and IBMAC

with different choices of the IB kernels: φ4h ∈ C 1, φB
4h ∈ C 2, φnew

5h ∈ C 3, φnew
6h ∈ C 3 and

φB
6h ∈ C 4. For the coarse Lagrangian marker spacings, for example, when hs = 2h, 4h, the

area errors for IBMAC and DFIB have similar orders of magnitude (compare Fig. 2.8a, 2.8b

to Fig. 2.8d, 2.8e). As the Lagrangian marker spacing is reduced from 2h to h, we see a

decrease in ∆A(t; X) for IBMAC by approximately a factor of 10 (see Fig. 2.8b, 2.8c) for all

the IB kernels we consider in this set of tests. In contrast, the area errors for DFIB improve

by at least a factor of 103 for the IB kernels that are at least C 2 (see Fig. 2.8e, 2.8f), and in

the best scenario, ∆A(t; X) for φB
6h decreases from 10−4 to 10−9. Moreover, as the Lagrangian

mesh is refined from h to h
8
, area errors for DFIB keep improving, even approaching the

machine epsilon in double precision for φB
6h at hs = h

4
, h

8
and for φnew

6h at hs = h
8

(see Fig. 2.9e,

2.9f). For a moderate Lagrangian marker spacing, such as hs = h and h
2
, area errors for DFIB

are several orders of magnitude smaller than those of IBMAC. On the other hand, area errors

for IBMAC stop improving around 10−5 for hs ≤ h, no matter how densely the Lagrangian

mesh is refined (see Fig. 2.8c, 2.9c). We remark that the smoothness of the IB kernel appears

to play an important role in volume conservation of DFIB. In this study DFIB achieves the

best volume conservation result for hs ≤ h with φB
6h, and this kernel also has the highest

regularity of the kernel functions considered in this work.

The area errors of DFIB shown in Fig. 2.8 and Fig. 2.9 can be attributed to two sources

of error. The first source of error is the time-stepping error from the temporal integrator,

which is relatively small in the quasi-static circle test. The second source of area loss comes

from discretizing the continuous curve (circle) as a polygon whose vertices are the IB markers.

This kind of error can be substantially reduced by using a high-order representation of the

interface, such as a periodic cubic spline. We define a normalized area error with respect to
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the true initial area of the interface Atrue by using the tracers,

∆A(t; Xtracer) :=
|A(t; Xtracer)− Atrue|

Atrue

, (2.6.10)

where we compute A(t; Xtracer) via exact integration of the cubic spline interpolant. Fig. 2.10

shows that the area enclosed by the passive tracers using the cubic spline approximation is

far more accurately preserved than the polygonal approximation. Furthermore, the area error

approaches zero as the discretization of the tracer interface is refined, even if the marker and

grid spacings are held fixed, as shown in Fig. 2.10. Indeed, the area of the spline interpolant

through the tracers of spacing hs/20 = h/20 is conserved to the machine epsilon in double

precision.

It is well-known that the traditional IB method produces non-smooth surface tractions, and

a number of improvements have been proposed [48, 49, 44, 32, 50]. Somewhat unexpectedly,

the divergence-free force spreading used in our DFIB method proposed here offers smoother

and more accurate tractions without any post-processing such as filtering [48]. This is

inherently linked to the reduced spurious flows compared to traditional methods [32]. In

Fig. 2.11, we compare the errors of the tangential and normal components of F(s, t = 1) for

DFIB and IBMAC for the quasi-static circle problem. We observe that the DFIB method

dramatically improves the accuracy of Lagrangian forces by only refining the Lagrangian

mesh, keeping the Eulerian grid fixed. By contrast, in the IBMAC method, the tractions do

not improve as the Lagrangian grid is refined.

2.6.3 A thin elastic membrane with parametric resonance in 2D

In many biological applications, the immersed structure is an active material, interacting

dynamically with the surrounding fluid and generating time-dependent motion. It has been

reported that the simulation of active fluid-structure interactions using the conventional
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Fig. 2.8: Normalized area errors of the pressurized circular membrane (relative to the initial
area, see (2.6.9)) simulated by IBMAC (top panel) and DFIB (bottom panel) with the IB
kernels: φ4h ∈ C 1, φB

4h ∈ C 2, φnew
5h ∈ C 3, φnew

6h ∈ C 3 and φB
6h ∈ C 4, and with Lagrangian

marker spacings hs ∈ {4h, 2h, h} indicated above each figure panel.
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Fig. 2.9: Normalized area errors of the pressurized circular membrane (relative to the initial
area, see (2.6.9)) simulated by IBMAC (top panel) and DFIB (bottom panel) with the IB
kernels: φ4h ∈ C 1, φB

4h ∈ C 2, φnew
5h ∈ C 3, φnew

6h ∈ C 3 and φB
6h ∈ C 4, and with Lagrangian

marker spacings, hs ∈
{
h
2
, h

4
, h

8

}
indicated above each figure panel. As the Lagrangian mesh

is refined, area errors for DFIB keep improving, even approaching the machine precision for
φB

6h at hs = h
4
, h

8
and for φnew

6h at hs = h
8
.
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Fig. 2.10: Normalized area errors of the interface enclosed by the tracers that move passively
with the interpolated velocity of the DFIB method (relative to the true area of the circle, see
Eq. (2.6.10)). The initial configuration of the interface is given by Eq. (2.6.6), and φnew

6h is
used for this computation. From left to right, the Lagrangian marker spacing is hs ∈

{
h, h

2

}
,

as shown in each figure panel. In each case, the area error enclosed by the tracers is computed
for tracer resolution Ntracer = M and 20M in two ways: (1) by the area of the polygon formed
by the tracers, and (2) by the exact integration of the cubic spline interpolant of the tracer
interface.
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Fig. 2.11: Normalized errors of the normal Fr (top panels) and tangential Fθ (bottom panels)
components of the Lagrangian force F(s, t = 1) of the circular membrane for s ∈ [0, π

2
]. The

computations are performed using DFIB (left panels) and IBMAC (right panels) with φnew
6h ,

and with Lagrangian marker spacings hs ∈
{

4h, 2h, h, h
2
, h

4
, h

8

}
.
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IB method may suffer from significant loss in the volume enclosed by the structure [26]. A

simple prototype problem for active fluid-structure interaction is a thin elastic membrane

that dynamically evolves in a fluid in response to elastic forcing with periodic variation in

the stiffness parameter [51, 52], that is,

F (s, t) = κ(t)
∂2X
∂s2

, (2.6.11)

where κ(t) is a periodic time-dependent stiffness coefficient of the form

κ(t) = Kc(1 + 2τ sin(ω0t)). (2.6.12)

It is quite remarkable that such a purely temporal parameter variation can result in the

emergence of spatial patterns, but that is indeed the case. We assume that the immersed

structure is initially in a configuration that has a small-amplitude perturbation from a circle

of radius R,

X (s, 0) = R(1 + ε0 cos(ps)) r̂(s), (2.6.13)

where r̂(s) denotes the position vector pointing radially from the origin. For certain choices

of parameters, the perturbed mode in the initial configuration may resonate with the driving

frequency ω0 in the periodic forcing, leading to large-amplitude oscillatory motion in the

membrane. The stability of the parametric resonance has been studied in the IB framework

using Floquet linear stability analysis for a thin elastic membrane in 2D [51, 52], and recently

for an elastic shell in 3D [53]. Motivated by the linear stability analysis of [51, 52], we consider

two sets of parameters listed in Table 2.4 for our simulations. The first set of parameters with

τ = 0.4 leads to a stable configuration in which the membrane undergoes damped oscillations

(Fig. 2.12a), and the second set with τ = 0.5 leads to an unstable configuration in which the

membrane oscillates with growing amplitude (Fig. 2.12b).
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ρ µ L R Kc ω0 p ε0 τ

1 0.15 5 1 10 10 2 0.05
0.4 (damped oscillation)

0.5 (growing oscillation)

Table 2.4: Parameters used to simulate the motion of the 2D membrane with parametric
resonance.

1 4

1

4

t = 0

t = 4.5

0 1 2 3 4 5 6 7 8 9 10

-0.05

0

0.05

(a)

1 4
1

4

t = 0

t=2

t=9.5

t = 25

0 5 10 15 20 25
-0.5

-0.3

-0.1

0.1

0.3

0.5

unstable

stable

(b)

Fig. 2.12: Left panel: snapshots of the 2D membrane with parametric resonance. Right
panel: the time-dependent amplitude ε(t) of the perturbed mode in Eq. (2.6.14). (a) Damped
oscillation (b) Growing oscillation.
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The computational domain Ω = [0, L]2 is discretized by a 128× 128 uniform Cartesian

grid with meshwidth h = L
128

. The number of Lagrangian markers is determined so that

the distance between the Lagrangian markers is hs ≈ h
2

in the initial configuration. The

discretization of the Lagrangian force density Eq. (2.6.11) is constructed in the same way as

Eq. (2.6.8). The time step size is ∆t = h
10

to ensure the stability of computation. On the left

panel of Fig. 2.12 we show snapshots of the membrane configuration for each case, and on

the right panel we plot the time-dependent amplitude ε(t) of the ansatz

X (s, t) = R(1 + ε(t) cos(ps)) r̂(s) (2.6.14)

by applying the FFT to the Lagrangian marker positions X. In the case of growing oscillation

(Fig. 2.12b), the amplitude of the perturbed mode increases from 0.05 to 0.3 until nonlinearities

eventually stabilize the growing mode and the membrane starts to oscillate at a fixed

amplitude.

We next give a direct comparison of area conservation of IBModified (with φcos
4h [26]),

IBMAC, and DFIB with the IB kernels φ4h ∈ C 1, φB
4h ∈ C 2, φnew

5h ∈ C 3, φnew
6h ∈ C 3 and

φB
6h ∈ C 4. In this test, the area enclosed the Lagrangian markers is computed by the

cubic spline approximation discussed in Sec. 2.6.2. In Fig. 2.13 and Fig. 2.14 we show

time-dependent area errors enclosed by the parametric membrane for the damped-oscillation

and the growing-amplitude cases respectively. For the damped-oscillation case (Fig. 2.13),

we see that area errors for DFIB are at least two orders of magnitude smaller than those

of IBMAC and IBModified for IB kernels that are at least C 2. The volume conservation of

IBModified and IBMAC was not directly compared in the previous work [31], but it was

anticipated that they are similar. In our comparison, we find that IBModified is only slightly

better than IBMAC in volume conservation, yet IBMAC is much simpler to use in practice.

In this set of tests, the choice of IB kernel also plays a role in affecting area conservation.
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In particular, the area errors for DFIB using φnew
6h and φB

6h are smaller than those of φB
4h

and φnew
5h by approximately one order of magnitude. Additionally, the error curves of DFIB

with φnew
6h and φB

6h remain oscillating below 10−7 while apparent growth of error in time is

observed with φB
4h and φnew

5h , and in the other IB methods. Unlike the quasi-static circle test

in which the time-stepping error is negligible compared to the area loss due to moving a finite

collection of Lagrangian markers, the time-stepping error in this example can be observed by

considering a dense collection of tracers with different time step sizes. With Ntracer = 4M ,

we first confirm that the area error of the tracer interface cannot be reduced by further

including more tracers, but as we reduce the time step size ∆t ∈
{
h
10
, h

20
, h

40

}
, we observe an

improvement in the area error, as shown in the bottom panel of Fig. 2.13. The improvements

in area conservation of DFIB is consistently more than 104 times over IBCollocated and

about 103 times over IBMAC. Similar results are obtained for the growing-amplitude case (see

Fig. 2.14) except that the parametrically-unstable membrane has experienced some area loss

due to the growing-amplitude oscillation before its motion is stabilized by the nonlinearities.

2.6.4 A 3D thin elastic membrane with surface tension

In our final test problem, we examine volume conservation of the DFIB method by

extending the surface tension problem to 3D. We consider in 3D a thin elastic membrane that

is initially in its spherical equilibrium configuration. The spherical surface of the membrane is

discretized by a triangulation consisting of approximately equilateral triangles with edge length

approximately equal to hs, constructed from successive refinement of a regular icosahedron by

splitting each facet into four smaller equilateral triangles and projecting the vertices onto the

sphere to form the refined mesh (see Fig. 2.15 for the first two levels of refinement). We use

{X1,X2, . . . ,XM} and {T1,T2, . . . ,TP} to denote the vertices (Lagrangian markers) and

the triangular facets of the mesh respectively. The generalization of discrete elastic energy
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Fig. 2.13: Top and middle panels: normalized area errors ∆A(t; X) (relative to the initial
area, see (2.6.9)) of the 2D parametric membrane undergoing damped oscillatory motion
(corresponding to the motion shown in Fig. 2.12a) are plotted on the semi-log scale. The area
enclosed by the markers is computed by the exact integration of a cubic spline approximation.
The computations are performed using IBMAC and DFIB with the IB kernels: φ4h ∈ C 1,
φB

4h ∈ C 2, φnew
5h ∈ C 3, φnew

6h ∈ C 3 and φB
6h ∈ C 4, and IBModified with φcos

4h ∈ C 1. The top
panel shows area errors for IBMAC and IBModified, and the middle panel shows area errors
for DFIB. The bottom panel shows improvement in area errors (relative to the true area of
the ellipse, see (2.6.10)) enclosed by the interface of Ntracer = 4M tracers by reducing the
time step size: ∆t ∈

{
h
10
, h

20
, h

40

}
.
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Fig. 2.14: Normalized area errors ∆A(t; X) of the 2D parametric membrane undergoing
growing-amplitude oscillatory motion (corresponding to the motion shown in Fig. 2.12b) are
plotted on the semi-log scale, as done in Fig. 2.13 for damped motion. The computations
are performed using IBMAC and DFIB with the IB kernels: φ4h ∈ C 1, φB

4h ∈ C 2, φnew
5h ∈ C 3,

φnew
6h ∈ C 3 and φB

6h ∈ C 4, and IBModified with φcos
4h ∈ C 1. The top panel shows area errors

for IBMAC and IBModified, the middle panel shows the area errors for DFIB for t = 0 to 16,
and the bottom panel extends the middle panel for t = 16 to 25.
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functional of surface tension in 3D is the product of surface tension constant γ (energy per

unit area) and the total surface area of the triangular mesh [21], that is,

E[X1, . . .XM ] = γ
P∑
p=1

|Tp| , (2.6.15)

where |Tp| is the area of the pth triangle. The Lagrangian force Fk∆s at the kth vertex is

minus the partial derivative of E[X1, . . . ,XM ] with respect to Xk,

Fk∆s = − ∂E

∂Xk

= −γ
∑

l∈nbor(k)

∂|Tl|
∂Xk

, (2.6.16)

where nbor(k) denotes the set of indices of triangles that share Xk as a vertex4. Each

component of the term ∂|Tl|/∂Xk in Eq. (2.6.16) can be computed analytically [21],

(
∂|Tl|
∂Xk

)
α

=
∂

∂Xk,α

(
1

2

∣∣∣(Xk −X′k)× (X′k −X
′′

k)
∣∣∣)

=
1

2

(
(X

′

k −X
′′

k)× n̂l

)
α
, α = 1, 2, 3, (2.6.17)

where Xk, X
′

k, X
′′

k denote the three vertices of the triangle Tl ordered in the counterclockwise

direction and n̂ is the unit outward normal vector of Tl.

The computation is performed in the periodic box Ω = [0, 1]3 with Eulerian meshwidth

h = 1
128

using DFIB with φnew
6h . For the quasi-static test, the initial fluid velocity is set to

be zero, and for the dynamic test, we set u(x, 0) = (0, sin(4πx), 0). In the computational

results shown in Fig. 2.16, the spherical membrane is discretized by triangulation (as shown

in Fig. 2.15) with 5 successive levels of refinement from the regular icosahedron (Fig. 2.15a),

which results in a triangular mesh with M = 10242 vertices and P = 20480 facets. The radius

4Here ∆s is the Lagrangian area associated with each node and Fk is the Lagrangian force density with
respect to Lagrangian area, but note that we do not need Fk and ∆s separately; only their product is used in
the numerical scheme.
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of the spherical membrane is set to be R ≈ 0.1 which corresponds to hs ≈ h
2
. The remaining

parameters in the computation are ρ = 1, µ = 0.05, γ = 1 and the time step size ∆t = h
4
. In

Fig. 2.16 we show snapshots of the 3D elastic membrane at t = 0, 1
32
, 1

4
and 1

2
for the dynamic

case. The elastic interface is instantaneously deformed by the fluid flow in the y-direction,

and due to surface tension, the membrane eventually relaxes back to the spherical equilibrium

configuration. Colored markers that move passively with the divergence-free interpolated

fluid velocity are added for visualizing the fluid flow in the vicinity of the interface.

The volume enclosed by the triangular surface mesh is approximated by the total volume

of tetrahedra formed by each facet and one common reference point (e.g. the origin) using the

scalar triple product. To study volume conservation of the DFIB method in 3D, we compare

the normalized volume error defined by

∆V (t; X) :=
|Vol(t; X)− Vol(0; X)|

Vol(0; X)
(2.6.18)

using IBMAC and DFIB with hs = h, h
2
, h

4
, which correspond to triangular meshes with

4,5,6 levels of refinement from the regular icosahedron respectively. For the quasi-static case

(Fig. 2.17a), volume errors for DFIB are at least 2 orders of magnitude smaller than those of

IBMAC. Further, volume errors for DFIB keep decreasing as the Lagrangian mesh is refined

from hs = h to h
4
. For the dynamic case (Fig. 2.17b), both methods suffer a significant

amount of volume loss arising from the rapid deformation at the beginning of simulation.

The volume error of DFIB with hs = h is similar to those of IBMAC in magnitude, but the

volume error of DFIB decreases as the Lagrangian mesh is refined for hs = h
2
, h

4
. It appears

that the behavior of volume error changes in nature from hs = h to h
2
, which coincides with

the conventional recommendation that the best choice of Lagrangian mesh spacing in the IB

method is hs = h
2

in practice. Similar to the two sources of error that contribute to the area

loss in 2D, the volume error observed in Fig. 2.17 can also be explained by contribution from
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(a) (b) (c)

Fig. 2.15: Triangulation of a spherical surface mesh via refinement of a regular icosahedron.
(a) Regular icosahedron (b) Refined mesh after one level of refinement (c) Refined mesh after
two levels of refinement.

the time-stepping error, and the volume loss due to only moving the vertices (Lagrangian

markers) that constitute the triangular mesh. This kind of error in volume conservation

decreases as the discretization of the surface is refined, even on a fixed Eulerian grid (as shown

in Fig. 2.17). Finally, we remark that the improvement in volume conservation does not seem

to be as substantial as the improvement in area conservation in 2D. We suspect that this may

be attributed to the larger approximation error in computing the volume using the tetrahedral

approximation (after the triangular mesh is deformed), whereas in two dimensions we use a

higher-order representation of the interface (cubic splines). Nevertheless, the reduction in

volume error from the Lagrangian mesh-refinement experiments indeed confirms that the

DFIB method can generally achieve better volume conservation if the immersed boundary is

sufficiently resolved (hs ≤ h
2
).

2.7 Conclusions

In this chapter, we introduce an IB method with divergence-free velocity interpolation

and force spreading. Our IB method makes use of staggered-grid discretization to define

an edge-centered discrete vector potential. By interpolating the discrete vector potential
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(a) t = 0 (b) t = 1
32

(c) t = 1
4 (d) t = 1

2

Fig. 2.16: Deformation of a 3D elastic membrane immersed in a viscous fluid with initial
velocity u(x, t) = (0, sin(4πx), 0) at t = 0, 1

32
, 1

4
and 1

2
. The computation is performed

using DFIB with φnew
6h in the periodic box Ω = [0, 1]3 with Eulerian meshwidth h = 1

128
. The

elastic membrane, initially in spherical configuration with radius R ≈ 0.1, is discretized by
a triangular surface mesh with M = 10242 vertices and P = 20480 facets so that hs = h

2

in the initial configuration. Colored markers that move passively with the divergence-free
interpolated fluid velocity are added for visualizing the fluid flow in the vicinity of the
membrane interface.
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Fig. 2.17: Normalized volume error ∆V (t; X) of a 3D elastic membrane using IBMAC and
DFIB with hs = h, h

2
, h

4
, where h = 1

128
. For (a) the quasi-static test, ∆V (t,X) of DFIB

decreases with mesh refinement, while there is no improvement in volume error for IBMAC.
For (b) the dynamic test, the volume error in DFIB remains (almost) steady in time for
hs = h

2
, h

4
as the membrane rests, whereas we see no substantial improvement in volume

conservation with mesh refinement for IBMAC, and the volume loss keeps increasing in time.
For this set of computations, the C 3 6-point kernel φnew

6h is used.
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in the conventional IB fashion, we obtain a continuum vector potential whose curl directly

yields a continuum Lagrangian velocity field that is exactly divergence-free by default. The

corresponding force-spreading operator is constructed to be the adjoint of velocity interpolation

so that energy is preserved in the interaction between the fluid and the immersed boundary.

Both the new interpolation and spreading schemes require solutions of discrete vector Poisson

equations which can be efficiently solved by a variety of algorithms. The transfer of information

from the Eulerian grid to the Lagrangian mesh (and vice versa) is performed using ∇δh

on the edge-centered staggered grid E. We have found that volume conservation of DFIB

improves with the smoothness of the IB kernel used to construct δh, and we have numerically

tested that IB kernels that are at least C 2 are good candidate kernels that can be used to

construct the regularized delta function in the DFIB method.

We have incorporated the divergence-free interpolation and spreading operators in a

second-order time-stepping scheme, and applied it to several benchmark problems in two

and three spatial dimensions. First, we have tested that our method achieves second-order

convergence in both the fluid velocity and the Lagrangian deformation map for the 2D

surface tension problem, which is admittedly a special case, since its continuum solution has

a continuous normal derivative of the tangential velocity across the immersed boundary. The

highlight of the DFIB is its capability of substantially reducing volume error in the immersed

structure as it moves and deforms in the process of fluid-structure interaction. Through

numerical simulations of quasi-static and dynamic membranes, we have confirmed that the

DFIB method improves volume conservation by several orders of magnitude compared to

IBMAC and IBModified. Furthermore, owing to the divergence-free nature of its velocity

interpolation, the DFIB method reduces volume error with Lagrangian mesh refinement

while keeping the Eulerian grid fixed. A similar refinement study would not yield improved

volume conservation when using the conventional IB method. Although the numerical

examples considered in this chapter only involve thin elastic structures, we note that the
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DFIB method can also be directly applied to model thick elastic structures without any

modification to the method, other than representing the thick elastic structure by a curvilinear

mesh of Lagrangian points [25, 54, 55, 56]. We also remark that the current version of the

DFIB method is accompanied with a single-fluid Navier-Stokes fluid solver. This is not a

fundamental limitation in our approach, and as a direction of future research, the DFIB

method may be extended to work with variable-viscosity and variable-density fluid solvers

[19].

Unlike other improved IB methods that either use non-standard finite-difference operators

(IBModified [26]) that complicate the implementation of the fluid solver, or rely on analytically-

computed correction terms (IIM [27, 28] or Blob-Projection method [38]) that may not be

readily accessible in many applications, the DFIB method is generally applicable, and it is

straightforward to implement in both 2D and 3D from an existing IB code that is based

on the staggered-grid discretization. Moreover, the additional costs of performing the new

interpolation and spreading do not increase the overall complexity of computation and are

modest compared to the existing IB methods.

We point out two limitations of our present work. A first limitation of the current version

of DFIB method is based on the assumption of periodic boundary conditions. Extending

the method to include physical boundary conditions at the boundaries of the computational

domain is one possible direction of future work, but there are several challenges to overcome.

First, a special treatment of spreading and interpolation is required near the boundaries since

the support of the IB kernel can extend outside of the physical domain [15, 22]. Second, with

non-periodic BCs, instead of FFTs, the resulting linear system needs to be solved by geometric

or algebraic multigrid method to achieve high performance. For unbounded domains, a lattice

Green’s function technique was recently proposed as an alternative approach [50]. Third,

for domains with physical boundaries, the use of projection-based fluid solvers to eliminate

pressure introduces splitting errors near the physical boundaries, and instead one ought to
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solve a coupled velocity-pressure system at every time step [37]. In the DFIB method, it

is also nontrivial to specify boundary conditions for the vector potential a(x) at physical

boundaries, which would lead to a Poisson equation with non-periodic BCs. It may be that

volume conservation as the structure passes near a boundary requires solving a coupled

velocity-potential system. A second limitation of our DFIB method is that the pressure

gradient generated by the Lagrangian forces is part of the resulting Eulerian force density

because force spreading is also constructed to be discretely divergence-free. However, this

may also be an important advantage of our method from the standpoint of accuracy, since it

means that jumps in pressure across the interface do not require any explicit representation.

We do not yet see an obvious way to extract the pressure from the Eulerian force density

in case it is needed for output purposes, or for the purposes of imposing physical boundary

conditions involving tractions or avoiding splitting errors near boundaries [37].

2.8 Appendix: Vector identities of discrete differential

operators

Suppose ϕ(x) is a scalar grid function defined on C, and u(x) and a(x) are vector grid

functions defined on F and E respectively. The following discrete vector identities are valid

on the periodic staggered grid just as in the continuum case,

Dh ×Ghϕ = 0, (2.8.1)

Dh · (Dh × u) = 0, (2.8.2)

Dh × (Dh × u) = Gh(Dh · u)− Lhu, (2.8.3)∑
x∈F

u(x) · (Ghϕ)(x)h3 = −
∑
x∈C

(Dh · u)(x)ϕ(x)h3, (2.8.4)
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∑
x∈E

a(x) · (Dh × u)(x)h3 =
∑
x∈F

(Dh × a)(x) · u(x)h3. (2.8.5)

Eqs. (2.8.1) and (2.8.3) are merely discrete analogues of well-known vector identities involving

gradient, divergence and curl. These identities can be proved in the same manner as their

continuous counterparts. Eqs. (2.8.4) and (2.8.5) can be verified via “summation by parts”.

Note that Eqs. (2.8.2) and (2.8.3) also hold if we replace u (which lives on F) by a (which

lives on E).

2.9 Appendix: Existence of discrete vector potential

Lemma 1. Suppose Dh · u = 0 and Dh × u = 0 for x ∈ F, then u(x) is a constant function

on F.

Proof. To prove this statement, we use Eqs. (2.8.3) to (2.8.5),

∑
x∈E

(Dh × u)(x) · (Dh × u)(x)h3 =
∑
x∈F

u(x) · (Dh × (Dh × u))h3

=
∑
x∈F

u(x) ·Gh(Dh · u)h3 −
∑
x∈F

u(x) · (Lhu)h3

= −
∑
x∈C

(Dh · u)2h3 +
∑

x∈E,i 6=j
x∈C,i=j

(
Dh
j ui
)2
h3.

Thus, ∑
x∈E,i 6=j
x∈C,i=j

(
Dh
j ui
)2
h3 =

∑
x∈E

∣∣(Dh × u)
∣∣2 h3 +

∑
x∈E

(Dh · u)2h3. (2.9.1)

Since Dh · u = 0 and Dh × u = 0 by hypothesis, the left-hand side of Eq. (2.9.1) is also zero.

But this implies ui is constant for i = 1, 2, 3.
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Lemma 2. If ψ is a scalar grid function that lives on one of the staggered grids, such that

∑
x

ψ(x)h3 = 0, (2.9.2)

then there exists a grid function ϕ such that

Lhϕ = ψ. (2.9.3)

Proof. This lemma states the solvability of the discrete Poisson problem Eq. (2.9.3). Since

Lh = Dh ·Gh is symmetric with respect to the inner product on the periodic grid

(ϕ, ψ) =
∑
x

ϕ(x)ψ(x)h3, (2.9.4)

what we have to show is that any ψ satisfying Eq. (2.9.2) is orthogonal to any ϕ0 in the null

space of Lh. But the null space of Lh with periodic boundary conditions contains only the

constant function, and hence (ψ, ϕ0) = 0 because of Eq. (2.9.2) as required.

Now we are ready to state the theorem that guarantees the existence of a discrete vector

potential a(x) for x ∈ E given a discretely divergence-free velocity field u(x) for x ∈ F.

Theorem 3. Suppose u(x) is a periodic grid function for x ∈ F, and u(x) satisfies

∑
x∈F

u(x)h3 = 0 and Dh · u = 0, (2.9.5)

then there exists a grid function a(x) for x ∈ E such that

u = Dh × a. (2.9.6)
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Proof. We choose a(x) to be any solution of

−Lh a = Dh × u. (2.9.7)

Such an a(x) exists by Lemma 2, because

∑
x∈E

(
Dh × u

)
i
(x) = εijk

∑
x∈E

1 ·Djuk h
3

= −εijk
∑
x∈F

(Dj1)uk h
3

= 0.

By applying Dh· to Eq. (2.9.7) and using the property that Lh and Dh· commute, we also

have

−Lh(Dh · a) = Dh · (Dh × u) = 0. (2.9.8)

Because the null space of Lh contains only the constant function, it follows that

Gh(Dh · a) = 0. (2.9.9)

If we use Eq. (2.9.9) and Eq. (2.8.3) for a , we can rewrite Eq. (2.9.7) as

Dh × (Dh × a) = Dh × u, (2.9.10)

or

Dh × (Dh × a− u) = 0. (2.9.11)
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But we also know from Eq. (2.8.2) and the requirement that Dh · u = 0 that

Dh · (Dh × a− u) = 0. (2.9.12)

From Eqs. (2.9.11) and (2.9.12) and Lemma 1, it follows that

Dh × a− u = constant. (2.9.13)

The constant must be zero, however, since Dh × a has zero sum by “summation by parts”,

and u has zero sum by assumption. This completes the proof of the existence of a vector

potential satisfying u = Dh × a.
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Chapter 3

A Fluctuating Boundary Integral

Method for Brownian Suspensions

We present a fluctuating boundary integral method (FBIM) for overdamped Brownian

Dynamics (BD) of two-dimensional periodic suspensions of rigid particles of complex shape

immersed in a Stokes fluid. We develop a novel approach for generating Brownian displace-

ments that arise in response to the thermal fluctuations in the fluid. Our approach relies on

a first-kind boundary integral formulation of a mobility problem in which a random surface

velocity is prescribed on the particle surface, with zero mean and covariance proportional

to the Green’s function for Stokes flow (Stokeslet). This approach yields an algorithm that

scales linearly in the number of particles for both deterministic and stochastic dynamics,

handles particles of complex shape, achieves high order of accuracy, and can be generalized

to three dimensions and other boundary conditions. We show that Brownian displacements

generated by our method obey the discrete fluctuation-dissipation balance relation (DFDB).

Based on a recently-developed Positively Split Ewald method [57], near-field contributions to

the Brownian displacements are efficiently approximated by iterative methods in real space,

while far-field contributions are rapidly generated by fast Fourier-space methods based on
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fluctuating hydrodynamics. FBIM provides the key ingredient for time integration of the

overdamped Langevin equations for Brownian suspensions of rigid particles. We demon-

strate that FBIM obeys DFDB by performing equilibrium BD simulations of suspensions of

starfish-shaped bodies using a random finite difference temporal integrator.

3.1 Introduction

Complex fluids containing colloidal particles are ubiquitous in science and industrial

applications. Colloidal particles span length scales from several nanometers, such as magnetic

nano-propellers [58] and molecular motors [59, 60], to a few microns, such as self-phoretic

Janus particles [61] and motile microorganisms [62]. In the last decade, increasing attention

has been given to the emerging field of active colloidal suspensions [63, 64, 65, 66, 67], in

which particles move autonomously or in response to external forces.

Despite the advances in the theory and experimental design of passive and active colloids,

developing accurate and efficient computational methods that are capable of simulating tens

or hundreds of thousands of particles, as well as handling particles of complex shape, still

remains a formidable challenge. The main purpose of this chapter is to present a novel

computational framework for Brownian suspensions in two-dimensional periodic domains,

which scales linearly in the number of particles for both deterministic and stochastic dynamics,

handles particles of complex shape, and achieves high order of accuracy.

The two key aspects that need to be included in a computational method for colloidal

suspensions are the long-ranged hydrodynamic interactions (HIs) and the correlated Brownian

motion of the particles. In the absence of active and Brownian motion, describing the

dynamics of Stokesian suspensions requires the accurate solution of mobility problems [68, 1],

i.e., computing the linear and angular velocities of the particles in response to applied

(external) forces and torques. This defines the action of a body mobility matrix N , which

73



encodes all of the hydrodynamic interactions among the particles. In addition, fluctuation-

dissipation balance requires the Brownian (stochastic) displacements of particles to have zero

mean and covariance proportional to N , i.e., hydrodynamic interactions are synonymous

with hydrodynamic correlations among the particles’ random velocities. Computing the

Brownian displacements over a time step requires generating Gaussian random variables

whose covariance is N . In other words, computing Brownian increments necessitates the

computation of the action of a matrix N 1
2 , the “square root” of N (not unique), on a vector

of white noise processes. Developing numerical methods for performing BD simulations for

many-particle systems requires applying the action of N and N 1
2 efficiently. In this work

we develop a new linear-scaling method for simulating Brownian suspensions of particles of

complex shape in two-dimensional periodic domains using a boundary integral formulation.

Because of its close connection to fluctuating hydrodynamics, we refer to our method as the

Fluctuating Boundary Integral Method (FBIM).

For passive suspensions of spherical particles, the methods of Brownian [69, 70, 71, 72, 73]

and Stokesian Dynamics (SD) [74, 75, 76] have dominated the chemical engineering community.

These methods are tailored to sphere suspensions and utilize a multipole hierarchy truncated

at either the monopole (BD) or dipole (SD) level in order to capture the far-field behavior of

the hydrodynamic interactions. Modern fast algorithms can apply the action of the truncated

mobility matrix with linear-scaling by using the Fast Multipole Method (FMM) for an

unbounded domain [73], and using Ewald-like methods for periodic [77, 76] and confined

domains [71]. The Brownian (stochastic) displacements are typically generated iteratively

by a Chebyshev polynomial approximation method [78], or by the Lanczos algorithm for

application of the matrix square root [79]. However, since the hydrodynamic interactions

among particles decay slowly like the inverse of distance in three dimensions and diverge

logarithmically in two dimensions, the condition number of the mobility matrix grows as the

number of particles increases (keeping the packing fraction fixed, see [57, Fig. 1]). Therefore,
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the overall computational scaling of directly applying iterative methods on N to generate

the action of N 1
2 is only super-linear in general.

The fluctuating Lattice Boltzmann (FLB) method has been used for Brownian suspensions

for some time [80, 81]. This is an explicit solvent method which includes fluid inertia and thus

operates at finite Schmidt number instead of in the overdamped limit we are interested in;

furthermore, FLB relies on artificial fluid compressibility to avoid solving Poisson problems

for the pressure. While the cost of each time step is linear in the number of particles (more

precisely, the number of fluid cells) N , in three dimensions O
(
N2/3

)
time steps are required

for vorticity to diffuse throughout the system volume, leading to superlinear O
(
N5/3

)
overall

complexity [57].

As an alternative, methods such as the Fluctuating Immersed Boundary method (FIB)

[82] and the Fluctuating Force Coupling Method (FFCM) [83, 84] utilize fluctuating hy-

drodynamics to generate the Brownian increments in linear time by solving the fluctuating

steady Stokes equation on a grid. This ensures that the computational cost of Brownian

simulation is only marginally larger than the cost of deterministic simulations, in stark

contrast to traditional BD approaches. The FIB/FCM approach to generating the Brownian

displacements is further improved in the recently-developed Positively Split Ewald (PSE)

method [57]. In PSE, the Rotne-Prager-Yamakawa (RPY) tensor [85] is used to capture the

long-ranged hydrodynamic interactions, and its action is computed with spectral accuracy by

extending the Spectral Ewald [77] method for the RPY tensor. The key idea in PSE is to

use the Hasimoto splitting [86] to decompose the RPY tensor into near-field (short-ranged)

and far-field (long-ranged) contributions, which guarantees that both contributions are inde-

pendently symmetric and positive-definite (SPD). This makes it possible to apply a Lanczos

algorithm [79] to generate the near-field contribution with only a small (O(1)) number of

iterations, while the far-field contribution is computed by fast Fourier-space methods based on

the fluctuating hydrodynamics using only a few FFTs. Later in Sec. 3.3.3, we will apply the
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same SPD splitting idea to the Green’s function of steady Stokes flow to achieve linear-scaling

in the FBIM.

Essentially all commonly-used methods for suspension flows are limited to spherical

particles (with some extensions to spheroids [87]), and generalization to include particles

of complex shape is generally difficult. Further, these methods employ an uncontrolled

truncation of a multipole expansion hierarchy and therefore become inaccurate when particles

get close to one another as in dense suspensions.

For deterministic Stokes problems, the Boundary Integral Method (BIM) [1] is very well-

developed [2, 3, 4] and allows one to handle complex particle shapes and achieve controlled

accuracy even for dense suspensions [5, 6]. In the boundary integral framework, the steady

Stokes equation are reformulated as an integral equation of unknown densities that are

defined on the boundary, using a first-kind (single layer densities) or second-kind (double

layer densities) formulation, or a mixture of both. Suspended particles of complex geometry

can be directly discretized by a surface mesh, and by a suitable choice of surface quadrature

higher-order, or even spectral accuracy, can be achieved. The key difficulty is handling the

singularity of the Green’s functions appearing in the boundary integral formulation. One

possibility is to regularize the singularity, as done in the method of regularized Stokeslets

[88] and the recently-developed linear-scaling rigid multiblob method [23], both of which rely

on a regularized first-kind formulation. Regularization, however, comes at a drastic loss of

accuracy, and to resolve near-field hydrodynamic interactions accurately one must make use

of high-order accurate singular quadratures for the singular or near-singular kernel in the

first- and second-kind integral operators, such as quadrature-by-expansion (QBX) [89, 90].

Discretizing the boundary integral equation typically leads to a dense linear system,

and fast algorithms for performing the dense matrix-vector product are required to achieve

linear-scaling, such as the Fast Multipole Method (FMM) [2, 4], and Spectral Ewald methods

[5, 6]. Much of the state-of-the-art BIM work on Stokes mobility problems [5, 6, 4, 91] uses
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(completed) second-kind (double layer) formulations, and we will not review it in detail here

since we will rely on a first-kind formulation. The current development of BIM for particle

suspensions is limited to the deterministic case only. In this work, we combine singular

quadrature (namely, Alpert quadrature in two dimensions) and the idea of SPD splitting from

PSE method to develop a linear-scaling method for generating the Brownian displacements

based on a first-kind boundary integral formulation.

The outline of this chapter is as follows. First, in the continuum formulation (Sec. 3.2),

we show that the action of N and N 1
2 can be formulated equivalently as the solution of a

Stokes boundary value problem, herein referred to as the Stochastic Stokes Boundary Value

Problem (SSBVP). The key idea is that, instead of adding a stochastic stress to the fluid

equations as done in fluctuating hydrodynamics, we can prescribe a random surface velocity

(distribution) on the particle surface that has zero mean and covariance proportional to the

(singular) periodic Green’s function of the Stokes flow (the periodic Stokeslet). Reformulating

the SSBVP as a first-kind boundary integral equation reveals that the random surface velocity

has covariance proportional to the single-layer integral operator, which suggests that one

ought to handle the singularity of the covariance using the same machinery used to handle

the singularity of the Green’s function in the first-kind BIM. This allows us to develop a

numerical method that satisfies discrete fluctuation-dissipation balance (DFDB) to within

solver and roundoff errors.

In our two dimensional discrete formulation (Sec. 3.3), the first-kind integral equation

is discretized using Alpert quadrature [92]. The resulting dense saddle-point linear system

of equations contains on the right hand side a random surface velocity whose covariance is

proportional to M, the matrix discretizing the single-layer operator. We solve the saddle

point problem iteratively by the generalized minimal residual method (GMRES), using fast

(near) linear-scaling methods to apply the action of M and M1/2 on vectors. To deal with

the inherent ill-conditioning of the linear system due to the first-kind formulation, we use a
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simple block-diagonal preconditioning technique [23, 6] for both GMRES and the Lanczos

method. Our fast method heavily relies on the set of ideas developed for the PSE method

[57], which in turn relies heavily on ideas developed for the SE method [77]. Specifically, we

use Ewald decomposition to split the action of M and M1/2 into a far-field (long-ranged) part

that can be computed efficiently in the wave space by FFTs, and a near-field (short-ranged)

part that can be computed directly in the real space using a preconditioned Krylov (Lanczos)

method [93]. The key requirement is to guarantee that both the far-field and near-field

contributions are symmetric positive definite (SPD), so that taking the square root of each

part is well-defined. One choice of splitting that ensures the SPD property of both parts [57]

is the Hasimoto splitting [86].

We apply the FBIM to several benchmark problems in two dimensions (Sec. 3.4), and

assess the effectiveness of the method by its accuracy and convergence, robustness, and

scalability for suspensions of many rigid disks. We also couple the FBIM with stochastic

temporal integrators based on the idea of random finite differences [82, 94, 95] to perform BD

simulations with starfish-shaped particles, and confirm that DFBD is obtained for sufficiently

small time step sizes by comparing the numerical equilibrium distribution to the correct

Gibbs-Boltzmann distribution.

3.2 Continuum formulation

This section presents the continuum formulation of the equations of motion for Brownian

suspensions. We consider a suspension of Nb rigid Brownian particles of complex shape im-

mersed in a viscous incompressible fluid with constant density ρ, viscosity η, and temperature

T in a domain V with periodic boundary conditions. Each particle or body, indexed by β,

is described by the position of a chosen “tracking point”, denoted by qβ, and its rotation

relative to a chosen reference configuration, denoted by θβ. In this chapter, we restrict the
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formulation and implementation to two spatial dimensions, and θβ ∈ R is simply the angle of

rotation. The generalization to three dimensional systems is intellectually straightforward but

technically complicated by the fact that orientation in three dimensions cannot be represented

by a vector in R3; instead, one can use normalized quaternions [94]. We denote the particle

surface by Γβ which encloses an interior domain denoted by Dβ. The fluid domain exterior

to the particles is defined by E = V\
{
∪Nbβ=1Dβ

}
, where Dβ = Dβ ∪ Γβ.

A number of prior works [96, 97, 98, 99] have arrived at a fluctuating hydrodynamics

formulation of the equations of motion when fluid and particle inertia (and perhaps com-

pressibility [100]) is accounted for 1. The fluid velocity v(r, t) and the pressure π follows the

time-dependent fluctuating Stokes equations for all r ∈ E,

ρ ∂tv +∇π = η∇2v +
√

2ηkBT ∇ ·Z, (3.2.1a)

∇ · v = 0, (3.2.1b)

where kB is Boltzmann’s constant and Z(r, t) is a random Gaussian tensor field whose

components are white in space and time with mean zero and covariance

〈Z ij(r, t) Zkl(r
′, t)〉 = (δikδjl + δilδjk)δ(r − r′)δ(t− t′). (3.2.2)

On the surface of Γβ, we assume that no-slip boundary condition (BC) holds,

v(x, t) = uβ + ωβ × (x− qβ), ∀x ∈ Γβ, (3.2.3)

1Note that Hauge and Martin-Lof [99] explain that there is some ambiguity in whether the stochastic
traction is taken to be zero or nonzero on the particle surface; this choice does not, however, affect the
resulting equations of motion for the bodies. We consider the formulation given here to be the more physically
meaningful and follow Hinch [97], see in particular Section 3 of the comprehensive work of Roux [98].
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where uβ and ωβ are the translational and rotational velocities of the particle. Each particle

is also subject to applied force fβ and torque τ β, which are related to the fluid stress tensor

σ and stochastic stress tensor σ(s) by

mβ
duβ
dt

= fβ −
∫

Γβ

(λβ + λ
(s)
β )(x) dSx,

Iβ ·
dθβ
dt

= τ β −
∫

Γβ

(x− xβ)× (λβ + λ
(s)
β )(x) dSx,

(3.2.4)

where mβ and Iβ are mass and moment of inertia tensor of body β. Here, λβ(x) = (σ ·nβ)(x)

and λ
(s)
β (x) =

(
σ(s) · nβ

)
(x) are the normal components of the stress tensors on the outside

of the surface of the body,

σ = −πI + η(∇v +∇>v),

σ(s) =
√

2ηkBTZ,
(3.2.5)

and nβ is the unit outward normal vector of Γβ pointing into the fluid domain.

In the overdamped (large Schmidt number) limit where the fluid velocity is eliminated as

a fast variable through an adiabatic mode elimination procedure [101], the diffusive motion of

the rigid bodies can be described by the stochastic differential equation (SDE) of Brownian

Dynamics (BD) 2 [98]:

dQ

dt
= NF +

√
2kBTN

1
2W + (kBT )(∂Q ·N ), (3.2.6)

where Qβ =
{
qβ,θβ

}
and Q =

{
Qβ

}Nb
β=1

is a composite vector that collects the positions and

orientations of particles (in two dimensions, Qβ ∈ R3). The first term on the right-hand-side

of Eq. (3.2.6) is the deterministic motion of rigid bodies, where N (Q) � 0 is the symmetric

positive semidefinite (SPD) body mobility matrix that converts applied forces and torques

2We use the differential notation of SDEs common in the physics literature.
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F (Q) =
{
fβ(Q), τ β(Q)

}Nb
β=1

to rigid body motion, and can be obtained by solving the

standard mobility problem for rigid body motion,



−∇ · σ = ∇π − η∇2v = 0,

∇ · v = 0,

v(x) = uβ + ωβ × (x− qβ), ∀x ∈ Γβ,∫
Γβ

λβ(x) dSx = fβ and

∫
Γβ

(x− xc)× λβ(x) dSx = τ β.

(3.2.7)

The random Brownian motion of the particles involves computing the “square root” of the

body mobility matrix, denoted by N 1
2 (Q) acting on a vector of independent white noise

processes W(t). In order for fluctuation-dissipation balance to hold, the matrix N 1
2 must

satisfy N 1
2

(
N 1

2

)>
= N , and does not necessarily have to be square. The last term on the

right-hand-side of Eq. (3.2.6) is the stochastic drift term due to the Ito interpretation of the

SDEs, where the divergence operator (∂x·) for a matrix-valued function A(x) is defined by

(∂x ·A)i =
∑

j ∂Aij/∂xj.

Developing numerical schemes to integrate Eq. (3.2.6) has two main challenges. The first

challenge is that, at every time step, one needs to generate the random velocity

U = {uβ,ωβ}
Nβ
β=1 = Ū + Ũ = NF + N 1

2W , (3.2.8)

where Ū is the deterministic particle velocity due to applied forces and torques, Ũ is the

random velocity due to the stochastic stress tensor, and W is a vector of independent and

identically distributed (i.i.d.) Gaussian random variables with mean zero and covariance

〈WiWj〉 =
2kBT

∆t
δij, (3.2.9)
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where ∆t is the time step size. More precisely, our task is to efficiently and accurately apply

the action of N and N 1
2 . The second challenge is to compute or approximate the stochastic

drift term (kBT )(∂Q ·N ), which is conventionally handled by developing specialized stochastic

temporal integrators [102, 103, 82, 104, 84]. The main focus of this chapter is to tackle the

first challenge by developing schemes that generate the action of N and N 1
2 based on a

boundary integral formulation.

3.2.1 Boundary value problem formulation

For simplicity, we now consider only a single particle Γ described by {q,θ} immersed in

a periodic domain V = [0, L]2, and we drop the subscript β. The generalization to account

for many-body interaction is straightforward. In this section, we show that the random

velocity given by Eq. (3.2.8) can be obtained by solving the Stochastic Stokes Boundary Value

Problem (SSBVP):



−∇ · σ = ∇π − η∇2v = 0, r ∈ V\D,

∇ · v = 0,

v(x) = u+ ω × (x− q)− v̆(x), x ∈ Γ,∫
Γ

λ(x) dSx = f and

∫
Γ

(x− q)× λ(x) dSx = τ ,

(3.2.10)

where v̆(x) is a random surface velocity prescribed on the particle, that has zero mean and

covariance

〈v̆(x) v̆(y)〉 =
2kBT

∆t
G(x,y), for all (x 6= y) ∈ Γ, (3.2.11)

Here G(x,y) is the Green’s function for steady Stokes flow with viscosity η, and includes

the specified boundary conditions (periodic BCs in our case). For x = y, Eq. (3.2.11) is not

well-defined since G is singular, which implies that v̆ is a distribution and not a function; a
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more precise definition is given later in Eq. (3.2.28).

By linearity of Stokes flow, the solution of Eq. (3.2.10) is the superposition of

v = v̄ + ṽ , σ = σ̄ + σ̃ , U = Ū + Ũ , (3.2.12)

where Ū = {ū, ω̄} and Ũ = {ũ, ω̃} with {v̄, σ̄, ū, ω̄} satisfying a Stokes BVP without

random surface velocity,



−∇ · σ̄ = ∇π̄ − η∇2v̄ = 0,

∇ · v̄ = 0,

v̄(x) = ū+ ω̄ × (x− q), x ∈ Γ∫
Γ

λ̄(x) dSx = f and

∫
Γ

(x− q)× λ̄(x) dSx = τ ,

(3.2.13)

and {ṽ, σ̃, ũ, ω̃} satisfying a force- and torque-free Stokes BVP with a random surface velocity

v̆ with zero mean and covariance (3.2.11),



−∇ · σ̃ = ∇π̃ − η∇2ṽ = 0,

∇ · ṽ = 0,

ṽ(x) = ũ+ ω̃ × (x− q)− v̆(x), x ∈ Γ,∫
Γ

λ̃(x) dSx = 0 and

∫
Γ

(x− q)× λ̃(x) dSx = 0.

(3.2.14)

The BVP given by Eq. (3.2.13) is the standard mobility problem for rigid body motion that

solves for the deterministic part of the particle velocity Ū = {ū, ω̄} = NF . The BVP given

by Eq. (3.2.14) generates its stochastic part Ũ = {ũ, ω̃}.

To show that the random particle velocity Ũ determined by the mobility problem (3.2.14)
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indeed obeys the fluctuation-dissipation balance,

〈ŨŨ>〉 =
2kBT

∆t
N , (3.2.15)

we will invoke the Lorentz Reciprocal Theorem (LRT) [1, see Eq. (1.4.5)],

∫
Γ

u · λ′ dS =

∫
Γ

u′ · λ dS, (3.2.16)

where {u,λ} and {u′,λ′} are two arbitrary velocity-traction pairs corresponding to solutions

of the homogeneous Stokes equations. To apply the LRT, we substitute {u,λ} by {ṽ, λ̃}

from Eq. (3.2.14), and {u′,λ′} by {v(i),λ(i)}, where v(i) and λ(i) are the velocity and traction

of the standard mobility problem (3.2.13) with applied force and torque F = {f , τ} = e(i),

where e(i) ∈ R3 is the ith column of the identity matrix. By using the associated BCs in

Eq. (3.2.13) and Eq. (3.2.14) to express ṽ and v(i) on Γ, and then making use of the force

and torque balance conditions for λ̃ and λ(i), we can rewrite Eq. (3.2.16) as

Ũ · e(i) = Ũi =

∫
Γ

v̆(x) · λ(i)(x) dSx. (3.2.17)

This allows to express the covariance of Ũ as:

〈ŨiŨj〉 =

∫
Γ

∫
Γ

λ(j)(x) · 〈v̆(x)v̆(y)〉 · λ(i)(y) dSy dSx

=
2kBT

∆t

∫
Γ

∫
Γ

λ(j)(x) ·G(x,y) · λ(i)(y) dSy dSx.

(3.2.18)

It can be shown (see 3.6) that the last integral in Eq. (3.2.18) is equal to the (i, j)th element

of the body mobility matrix N , giving the desired result,

〈ŨiŨj〉 =
2kBT

∆t
Nij. (3.2.19)
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This shows that solving the SSBVP (3.2.10) gives the desired deterministic and stochastic

particle velocity

U = Ū + Ũ = NF + N 1
2W . (3.2.20)

While the LRT has been used in the past to analyze the nonhomogeneous Stokes BVP

involving the fluctuating stress [96], here we employ it to establish that the homogeneous

Stokes BVP given by Eq. (3.2.14) and Eq. (3.2.11) yields the correct statistics for the rigid

body motion of the immersed particles. The removal of the fluctuating stress driving the

surrounding fluid allows for the eventual application of boundary integral techniques to solve

the SSBVP.

3.2.2 First-kind integral formulation

For rigid particles moving in a Stokes fluid, we observe that the details of what happens

inside the particle do not actually matter for its motion and its hydrodynamic interactions

with other particles or boundaries. Therefore, it is possible to extend the fluid to the entire

domain so that the fluid inside the body moves with a velocity that is continuous across the

boundary of the body. Once we extend the fluid to the interior of bodies, we may write down

an alternative formulation of the SSBVP (3.2.10) as a first-kind boundary integral equation

[1],

v(x ∈ Γ) = u+ ω × (x− q)− v̆(x) =

∫
Γ

G(x,y)ψ(y) dSy, (3.2.21)

along with the force and torque balance conditions

∫
Γ

ψ(x) dSx = f and

∫
Γ

(x− q)×ψ(x) dSx = τ . (3.2.22)

Equations (3.2.21) and (3.2.22) together define a linear system of equations to be solved for

the single-layer density ψ(x ∈ Γ) and particle velocity U = {u,ω}. We remark that ψ is
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the jump in the normal component of the stress when going across the body surface from the

“interior” flow to the “exterior” flow. If v̆ = 0, then ψ = λ is the traction.

In operator notation, we can write the system formed by Eqs. (3.2.21) and (3.2.22) as a

saddle-point problem,  M −K

−K∗ 0


 ψ
U

 = −

 v̆

F

 , (3.2.23)

where M denotes the single-layer integral operator defined by

(Mψ)(x ∈ Γ) =

∫
Γ

G(x,y)ψ(y) dSy, (3.2.24)

and K is a geometric operator that relates particle velocity to surface velocities,

(KU)(x ∈ Γ) = u+ ω × (x− q), (3.2.25)

and its adjoint K? is an integral operator that converts the single-layer density ψ to a force

and torque,

K?ψ =

(∫
Γ

ψ(x) dSx ,

∫
Γ

(x− q)×ψ(x) dSx

)
= (f , τ ). (3.2.26)

The covariance of the random surface velocity v̆ can be written as

〈v̆v̆〉 =
2kBT

∆t
M, (3.2.27)

by which we mean that Mψ′ = 〈(v̆,ψ′) v̆〉, for all ψ′ in L2-space, and (·, ·) denotes the

L2- inner product defined by (f , g) =
∫

Γ
f(x) · g(x) dSx. If the random surface velocity v̆

were a function and could therefore be evaluated pointwise, Eq. (3.2.27) would simply be a
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formal rewriting of Eq. (3.2.11). However, we reminder the reader again that Eq. (3.2.11)

is also formal (in the same way that Eq. (3.2.2) is) and v̆ is a distribution and therefore

cannot be evaluated pointwise. We can define v̆ more precisely as follows. Since M is a

compact, self-adjoint and positive-semidefinite operator in the L2 sense, it has countably

infinitely many eigenvalues λi ≥ 0 and orthonormal eigenfunctions wi, so we may write v̆ in

the Karhunen-Loève expansion

v̆
d.
=
∞∑
i=1

√
λiWiwi, (3.2.28)

where as before Wi are independent Gaussian random variables with mean zero and variance

2kBT/∆t. In formal operator notation, we will write Eq. (3.2.28) as v̆ = M 1
2W , where(

M 1
2

)(
M 1

2

)>
= M. We have found Eq. (3.2.27) (equivalently, Eq. (3.2.28)), rather than

the deceptively simple Eq. (3.2.11), to be a suitable starting point for a finite-dimensional

discretization of v̆, as we explain shortly.

In this formulation, we require that v̆(x) is consistent with a divergence-free velocity field

in the extended domain, i.e., ∫
Γ

v̆(x) · n(x) dSx = 0, (3.2.29)

which is required for Eq. (3.2.23) to be solvable since the single-layer operator M has a

nontrivial null space consisting of single-layer densities that are normal to the boundary,

(Mn)(x ∈ Γ) =

∫
Γ

G(x,y)n(y) dSy = 0. (3.2.30)

From Eq. (3.2.28), we note that v̆ = M 1
2W is perpendicular to the null space of M, and

hence, the solvability condition Eq. (3.2.29) is fulfilled.

Formally3, taking the Schur complement of Eq. (3.2.23) to eliminate ψ and solving for

3For the operator M−1 to be well-defined, we need to resort to in its precise definition either the space of
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the body motion U , we obtain

U = Ū + Ũ = (K?M−1K)−1F + (NK?M−1)v̆

= (K?M−1K)−1F + (NK?M−1M 1
2 )W

= NF + N 1
2W ,

(3.2.31)

which allows us to formally define N and N 1
2 explicitly as,

N = (K?M−1K)−1,

N 1
2 = NK?M−1M 1

2 .

(3.2.32)

Note that the random surface velocity v̆ is in the range of M by the construction of

Eq. (3.2.28), so that M−1v̆ is well-defined. We can therefore formally show that fluctuation-

dissipation balance holds in the continuum operator sense,

N 1
2

(
N 1

2

)>
= NK?M−1M 1

2

(
M 1

2

)>
M−1KN

= N (K?M−1K)N

= N (N )−1N = N .

(3.2.33)

This shows that the desired random velocity U in Eq. (3.2.8) can be generated by solving

Eq. (3.2.23), which is the first-kind boundary integral formulation of the SSBVP (3.2.10).

While at first sight it may appear that we have simply formally rederived Eq. (3.2.19)

by appealing to a first-kind BVP formulation, we will demonstrate next that the formal

continuum formulation presented here has a well-defined finite-dimensional truncation that is

very suitable for numerical computations.

band-limited functions or the fractional Sobolov space, but here, we will simply use this formal computation
to inform our discretization and show later in Sec. 3.3.1 that our finite-dimensional discretization converges
numerically.
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3.3 Fluctuating boundary integral method

This section presents the fluctuating boundary integral method (FBIM) for suspensions

of Brownian rigid particles in two dimensions. Our discrete formulation closely follows the

(formal) continuum first-kind formulation presented in Sec. 3.2.2. We have found this to be

much more effective than following the more general BVP formulation presented in Sec. 3.2.1.

Specifically, one approach to discretizing the SSBVP Eq. (3.2.10) is to first generate a (smooth)

random surface velocity function v̆ using a regularized4 variant of Eq. (3.2.11), and then

to use a standard spectrally-accurate second-kind boundary integral formulation to solve

the resulting boundary-value problem. Our preliminary investigations of such an approach

have revealed that regularization (truncation) of the covariance in Eq. (3.2.11) leads to a

drastic loss of accuracy in numerical fluctuation-dissipation balance. Instead, by relating the

covariance of the random surface velocity to the first-kind operator as in Eq. (3.2.27), the

regularization of the distribution v̆ becomes directly connected to the singular quadrature

used to discretize M. As we demonstrate here, this leads to a first-kind formulation that

satisfies discrete fluctuation-dissipation (DFDB) to within solver tolerances, while preserving

the underlying accuracy of the singular quadrature.

We begin by presenting a discrete formulation of the mobility problem (3.2.23) by first

discretizing the continuum operators M, K and K?, to obtain a discrete saddle-point linear

system, whose solution strictly obeys DFDB without any approximation. To efficiently

solve the saddle-point linear system with Krylov iterative methods, we present the two key

components of FBIM: a fast routine for computing matrix-vector product of the single-

layer matrix M (i.e., the discretized operator M), and a fast method for generating the

random surface velocity v̆ = M1/2W. To address the inherent ill-conditioning of the linear

system arising from the first-kind integral formulation, we will also discuss block-diagonal

4The most direct way to regularize the singular Green’s function is to represent it in Fourier space and
then simply truncate the finite-dimensional sum to a finite number of Fourier modes.
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preconditioning for the iterative solvers.

3.3.1 Discrete formulation of the mobility problem

We present the discrete formulation of the mobility problem (3.2.23) by first discretizing

the continuum operators K, K? and M. In the discrete formulation, for generality, we

describe our method for many-body suspensions. Let us assume that Γβ is parametrized by γβ :

[0, 2π]→ R2. We introduce a collection of Np equispaced points sj = j∆s, j ∈ {1, . . . , Np},

where ∆s = 2π/Np, and Γβ is discretized by the collection of nodes xβ = {xβ,j}Npj=1, where

xβ,j = γβ(sj). We also denote the composite vector of all nodes or points by X = {xβ}Nbβ=1.

The discrete operator K is a geometric matrix defined by

(KU) (xβ,j) = (KβUβ)j = uβ + ωβ × (xβ,j − qβ), (3.3.1)

where Kβ is the sub-block of K that maps the particle velocity Uβ = {uβ,ωβ} to the velocity

at the node xβ,j on Γβ.

The adjoint operator K? defined by Eq. (3.2.26) can be discretized by the periodic

trapezoidal rule for each body,

∫
Γβ

ψ(x) dSx ≈
Np∑
j=1

µβ,j, (3.3.2a)

∫
Γβ

(x− qβ)×ψ(x) dSx ≈
Np∑
j=1

(xβ,j − qβ)× µβ,j, (3.3.2b)

where µβ,j = ψ (xβ,j) ∆s denotes an unknown discrete boundary force at the node xβ,j on

Γβ. We can therefore write

(K?ψ)(X) ≈ K>µ, (3.3.3)

where µ =
{
µβ
}Nb
β=1

is a composite vector that collects all the boundary forces.
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To approximate the single-layer operator M, we need to employ a singular quadrature

that can handle the singularity of G. The development of quadrature rules for singular or

near-singular integrals is an active research area of its own [92, 105, 106, 89, 90, 107]. In two

dimensions, for simplicity, we will use the Alpert quadrature which is based on a modification

of the trapezoidal rule with auxiliary nodes whose weights are configured to achieve the

desired order of accuracy [92].

In matrix notation, the approximation of the single-layer integral operator evaluated on

the vector of quadrature nodes X can be compactly written as

(Mψ)(X) ≈Mµ, (3.3.4)

where M is the discretized matrix operator of M, hereinafter referred to as the single-layer

matrix. The details of constructing M will be discussed in Sec. 3.3.2. We have chosen to

keep track of surface forces in the discrete representation (rather than surface tractions as in

the continuous case) as this yields both a symmetric saddle-point system in the usual sense,

as well as the desirable property that Mij → G(xi,xj) as |xi − xj| → ∞. The matrix M

has a physical interpretation of a mobility matrix relating surface forces to surface velocities,

which in turn suggests that M should be symmetric (self-adjoint) in the standard L2 sense.

Following the continuum formulation (see Eq. (3.2.27)), we require the discrete random

surface velocity5 to satisfy

〈v̆v̆>〉 =
2kBT

∆t
M. (3.3.5)

More precisely, we need to generate a vector of Gaussian random variables v̆ whose covariance

is given by Eq. (3.3.5), and we denote it by v̆ = M1/2W, where W is a finite-dimensional

5The discrete v̆ can be thought of as being a suitably scaled finite-volume representation of the distribution
v̆.
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vector of Gaussian random variables with mean zero and covariance

〈WiWj〉 =
2kBT

∆t
δij, (3.3.6)

and M1/2 satisfies (
M1/2

) (
M1/2

)>
= M. (3.3.7)

The discrete formulation of Eq. (3.2.23) is a saddle-point linear system for the boundary

forces µ and the rigid body motion U ,

 M −K

−K> 0


 µ

U

 = −

 M1/2W

F

 . (3.3.8)

By taking the Schur complement of M and eliminating µ, we obtain

U = NF +N
1
2 W

= (K>M†K)−1F + (NK>M†M1/2)W,

(3.3.9)

from which we can define

N = (K>M†K)−1,

N
1
2 = NK>M†M1/2,

(3.3.10)

where M† is the pseudo-inverse of M, and N is an approximation of N up to the order of

accuracy of Alpert quadrature. Under the definition of N and N
1
2 , we can verify that our
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discrete formulation satisfies DFDB without any approximation,

N
1
2

(
N

1
2

)>
= NK>M†M1/2

(
M1/2

)>
M†KN ,

= N (K>M†K)N ,

= N (N )−1N = N .

(3.3.11)

Note that these relations are well-defined finite-dimensional versions of the formal continuum

equations (3.2.32) and (3.2.33).

To generate the random velocity given by Eq. (3.3.9) efficiently, we solve the saddle-point

linear system (3.3.8) by GMRES. In the remaining sections, we present efficient numerical

that compute the matrix-vector product Mµ and generate the random surface velocity

v̆ = M1/2W.

3.3.2 Fast matrix-vector multiplication for the single-layer matrix

In this section we develop a fast method to efficiently perform the matrix-vector product

Mµ. The key idea for achieving linear-scaling is to use Ewald splitting to decompose the

periodic Stokeslet as

G = G(w)
ξ + G(r)

ξ = H ∗G + (G−H ∗G), (3.3.12)

where “∗” denotes convolution, and G(w)
ξ is a far-field (long-ranged) smooth kernel that decays

exponentially in Fourier space, and G(r)
ξ is a near-field (short-ranged) singular kernel that

decays exponentially in real space. The choice of splitting function H(r; ξ) by Hasimoto [86]

is defined in Fourier space as

Ĥ(k; ξ) =

(
1 +

k2

4ξ2

)
e−k

2/4ξ2 , (3.3.13)
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where ξ is the splitting parameter that controls the rate of exponential decay.

Using the Fourier representation of the periodic Green’s function of Stokes flow we can

compute the far-field kernel in wave space as

G(w)
ξ (r) =

1

ηV

∑
k 6=0

Ĥ(k; ξ)

k2
(I− k̂k̂>) e−ik·r, (3.3.14)

where V = |V| = L2, k ∈ {2πκi/L : κi ∈ Z, i = 1, 2}, and k̂ = k/k for k = |k|. The near-field

kernel is analytically computed in real space using the inverse Fourier transform6,

G(r)
ξ (r) =

1

4πη

[
1

2
E1(ξ2r2)I +

(
r ⊗ r
r2
− I

)
e−ξ

2r2
]
, (3.3.15)

where E1(z) is the exponential integral defined by

E1(z) =

∫ ∞
1

e−zt

t
dt =

∫ ∞
z

e−t

t
dt. (3.3.16)

We observe from Eq. (3.3.15) that G(r)
ξ also has the logarithmic singularity of G, since in the

limit z → 0,

E1(z) = −γ − log z +O(z), (3.3.17)

where γ is the Euler-Mascheroni constant. An important remark on the Hasimoto splitting is

that it ensures both G(r)
ξ and G(w)

ξ are SPD, because 0 ≤ Ĥ(k; ξ) ≤ 1 for all k and ξ [57].

The splitting of G naturally induces the splitting of the single-layer integral operator

M = M(r) +M(w), and subsequently, the corresponding splitting of the single-layer matrix

M = M(r) + M(w), (3.3.18)

6We gratefully thank Anna-Karin Tornberg for sharing with us notes on the Hasimoto splitting of the
Stokeslet in two dimensions.
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where the elements of M(w) are obtained by applying the regular trapezoidal rule to M(w),

which gives (
M(w)

)
mn

= G(w)
ξ (xm − xn). (3.3.19)

The elements of M(r) are obtained by applying Alpert’s hybrid Gauss-trapezoidal quadrature

to M(r), and can be futher decomposed as

M(r) = M(t) + M(a). (3.3.20)

where M(t) is the trapezoidal rule, i.e.,
(
M(t)

)
mn

= G(r)
ξ (xm − xn) for m 6= n, and we define

it to be zero for m = n. The singular quadrature correction M(a) is a banded matrix that

contains Alpert weights for the logarithmic singularity of G(r)
ξ . The Alpert weights are

defined on a set of auxiliary nodes that do not coincide with the trapezoidal nodes, so a

local Lagrangian interpolation from the auxiliary nodes to the trapezoidal nodes is needed to

obtain the elements of M(a). Note that M(r), M(w) and M(a) depend on ξ, but for conciseness

of notation, the subscript ξ is omitted.

A key ingredient of FBIM is a fast method to compute the matrix-vector product

Mµ =
(
M(a) + M(t) + M(w)

)
µ. (3.3.21)

We recall that the Alpert quadrature assigns only local correction weights to the trapezoidal

nodes. Since M(a) is block-diagonal and banded, matrix-vector products involving M(a) can be

computed in O(Nb) operations using vector rotations and sparse matrix-vector multiplications,

(
M(a)µ

)
β

= Rβ M
(a)
ref R>β µβ, β = 1, . . . , Nb, (3.3.22)

where M
(a)
ref is a precomputed Alpert matrix for some reference configuration, and Rβ is the

95



rotation matrix from the chosen reference configuration to the configuration of Γβ.

To accelerate matrix-vector products involving M(r) and M(w) which are not sparse, we

rely on the Spectral Ewald method [77]. For the near-field contribution, due to the short-

ranged nature of G(r)
ξ , the action of M(t) can be computed by using the cell list algorithm,

commonly-used in Molecular Dynamics [108]. First, we partition the computational domain

into Nbox × Nbox cells and sort the points into these cells, which takes O(Nb) work. The

splitting parameter ξ is chosen such that the real-space sum converges to within a prescribed

tolerance ε, at a cutoff radius rc = L/Nbox. For each target point, the real-space sum is

reduced to a local interaction with source points in its own cell and in all adjacent cells

(with periodicity), i.e., nine cells in two dimensions. If the density of points in each cell is

approximately held fixed as the system size grows, the complexity of the direct summation in

the near field is also O(Nb).

In the SE method, the far-field contribution given by Eqs. (3.3.14) and (3.3.19) can be

factorized as

M(w) = D?BD, (3.3.23)

where the block-diagonal matrix B is defined in the Fourier space as

B(k, ξ) =
1

k2
H(k, ξ)(I− k̂k̂>), (3.3.24)

which essentially maps the Fourier representation of forces to velocities. The operator D is

the non-uniform Discrete Fourier Transform (NUDFT) that converts point forces µ = {µn}

on a collection of non-uniform source points {xn} to Fourier space. The operator D and its

adjoint D? can be efficiently applied using the non-uniform Fast Fourier Transform (NUFFT)

(see [34] and the references therein). In operator notation, we can express the NUFFT as

D = CFS and D? = S?F?C?, (3.3.25)
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where S and S? are a pair of spreading and interpolation operators using Gaussian kernels,

and F and F? are the forward and inverse FFT operators on a uniform grid, and C and C?

are “deconvolution” operators.

The main idea of NUFFT is to first smear (spread) the point forces to a uniform grid

using a Gaussian kernel, then make use of the FFT on the uniform grid, and finally apply

the deconvolution (see [34]). In the SE method, the Gaussian kernel with the Fourier

representation e−ηk
2/8ξ2 is used for spreading and interpolation, where η is a free parameter

that sets the shape of Gaussian [77, 109]. We observe that this Gaussian with parameter η is

different from the one in the Hasimoto function for Ewald splitting. The main purpose for

introducing an extra parameter η is that it allows the SE method to independently control

the width of spreading and interpolation, so that the accuracy of evaluating the wave-space

sum with NUFFT is decoupled from the accuracy of the Ewald sum.

Next we address the choice of parameters in the SE method. The parameters that need to

be set by the user include the number of partition cells Nbox (or rc), the splitting parameter

ξ, the size of the Fourier grid M (even), the number of points P (odd) for spreading and

interpolation in the NUFFT, and the Gaussian shape parameter m (which is related to η, see

[77, Eq. (22)]). First, we set the number of partition cells Nbox, primarily based on balancing

the computational work between the real- and wave-space sums (see Sec. 3.4.3 for details),

and set rc = L/Nbox. For a user-specified error tolerance level ε, the splitting parameter ξ

and M are determined by the truncation error estimates in the real and wave spaces [77],

respectively,

Cre
−ξ2r2c ≤ ε, (3.3.26a)

Cwe
−k2max/4ξ

2 ≤ ε, (3.3.26b)

where kmax corresponds to the largest mode of a grid of size M ×M . The constants in the
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error estimates are estimated empirically as in [77], and we have found that Cr ≈ 100 and

Cw ≈ 1 are suitable for the Stokeslet in two dimensions. The remaining parameters P and

m (or η) together determine the accuracy of evaluating the wave-space sum using NUFFT.

From the error estimation of Lindbo and Tornberg [77, 109], the optimal choice is m ∼
√
πP ,

so that the approximation error arising from the NUFFT (including quadrature error and

Gaussian truncation error) is approximately e−πP/2 . ε, from which P is determined.

The overall complexity of the wave-space sum is O(Nb) for spreading and interpolation

and O(M2 logM2) for the FFTs. For dense suspensions in two dimensions, we have found in

our implementation that the computational work is dominated by spreading and interpolation

instead of the FFTs.

3.3.3 Fast sampling of the random surface velocity

The second key component of FBIM is a fast routine for sampling the random surface

velocity v̆ = M1/2W. The action of M1/2 can be computed using iterative methods such as

the Chebyshev polynomial approximation [78] or the Lanczos algorithm for matrix square

root [79]. For the Stokeslet in two dimensions, applying iterative methods directly for M are

expected to scale poorly for dense suspensions because of its logarithmic growth in the far

field. The condition number of M, as well as the number of iterations required to converge

for a given tolerance level, would grow with the system size. This would make the overall

complexity for applying the action of M1/2 super-linear, even though the action of M can be

applied with O(Nb) work.

To improve the super-linear complexity for generating the random surface velocity with

iterative methods, we use the idea of the Positively Split Ewald (PSE) method developed by

Fiore et al. [57] for the RPY tensor. The main idea of PSE is to split the action of M1/2 into

a near-field part
(
M(r)

)1/2
and a far-field part

(
M(w)

)1/2
, and generate the random surface

98



velocity as

M1/2W
d.
=
(
M(r)

)1/2
W(r) +

(
M(w)

)1/2
W(w), (3.3.27)

so that the near-field contribution can be rapidly generated by the Lanczos algorithm [79]

in the real space, and the far-field contribution can be efficiently handled in the wave space

by NUFFT. The right-hand-side of Eq. (3.3.27) defines one way of computing the action of

M1/2 provided that W(r) and W(w) are two independent Gaussian random vectors.

For a sufficiently small cut-off radius or a sufficiently large ξ, the real-space kernel G(r)
ξ

decays exponentially, so that the near-field interaction is localized and the condition number

of M(r) does not grow with the number of bodies, while the packing fraction is held fixed.

However, due to the singular nature of G(r)
ξ , the condition number of M(r) may grow if

the number of points per body increases. We have found that the Lanczos algorithm [93]

with block-diagonal preconditioning (see Sec. 3.3.4) can significantly reduce the number of

iterations. In the case when two bodies nearly touch, so that the problem itself becomes

ill-conditioned, the block-diagonal approximation becomes worse and the number of iterations

for all iterative solvers increases. Nevertheless, we have found that the block-diagonal

preconditioner is still effective, and it takes a reasonable number of iterations for the Lanczos

algorithm to converge, even for dense suspensions (see Fig. 3.4).

Note that the validity of Eq. (3.3.27) relies on the property that both M(r) and M(w)

need to be SPD. We observe that, even though G(r)
ξ is a SPD kernel, its singular contribution

given by the Alpert correction matrix M(a) is not symmetric for a general-shaped particle.

We have confirmed numerically that using only the symmetric part of M(a) does not affect

the accuracy of the Alpert quadrature. In practice, we observe that the Lanczos algorithm

is rather insensitive to spurious negative eigenvalues of small magnitude that may exist for

(M(r) + (M(r))>)/2.

The far-field matrix M(w) is SPD by construction because of Eq. (3.3.14), and we can
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rewrite Eq. (3.3.23) as

M(w) =
(
D?B1/2

) (
D?B1/2

)?
, (3.3.28)

with B1/2 defined in the wave space as

B1/2(k, ξ) =
1

k
Ĥ1/2(k; ξ)(I− k̂k̂>), (3.3.29)

The far-field contribution of the random surface velocity can be generated by

(
M(w)

)1/2
W(w) = D?B1/2W(w) = S?F?C?B1/2W(w), (3.3.30)

where W(w)(κ) is a complex-valued random vector in the wave space, and κi ∈
{
−M

2
, . . . , M

2
− 1
}

.

The sequence of operations in Eq. (3.3.30) can be interpreted as follows. We first generate

random numbers in the wave space, and project onto the divergence-free subspace by the

projection I− k̂k̂>, then scale by Ĥ1/2(k; ξ)/k, and apply deconvolution and (inverse) FFTs

to obtain velocities in the real space on the grid, and finally, perform interpolation using a

Gaussian kernel to obtain the random surface velocities on the particles. This is equivalent to

how random velocities are generated in methods like FIB [82] and fluctuating FCM [83, 84].

We remark that the cost of applying the action of
(
M(w)

)1/2
in Eq. (3.3.30) is even cheaper

than the action of M(w), since it only requires half the work.

We note that certain complex-conjugate symmetry of W(w)(κ) must be maintained to

ensure its Fourier transform gives a real-valued Gaussian random vector with the correct

covariance in the real space. Specifically, we require that, the zeroth mode κ = (0, 0) is set

to be zero, and the Nyquist modes κ ∈
{

(−M
2
, 0), (0,−M

2
), (−M

2
,−M

2
)
}

are real-valued and

generated from N (0, I2×2). All the remaining modes are generated by W(w)(κ) = a + ib for

a,b ∈ N (0, 1
2
I2×2) , and have the complex-conjugate symmetry: W(w)(κ) = (W(w)(κ′))∗,

where κ′ = −κ mod M .
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3.3.4 Block-diagonal preconditioning

This section presents the block-diagonal preconditioning technique introduced in [23]

for solving the ill-conditioned linear system (3.3.8) with GMRES, and for generating the

near-field contribution of the random surface velocity with the Lanczos algorithm [79, 93].

The block-diagonal preconditioner for the linear system (3.3.8) is obtained by neglecting all

hydrodynamic interactions between different bodies, i.e.,

P =

 M̃ −K

−K> 0

 , (3.3.31)

where M̃ is a block-diagonal approximation of M obtained by setting elements of M corre-

sponding to pairs of points on distinct bodies to zero,

M̃αβ = δαβMαβ, (3.3.32)

and the subscripts with Greek letters denote the sub-block containing interactions between

Γα and Γβ. Applying the preconditioner to Eq. (3.3.8) amounts to solving a linear system,

 M̃ −K

−K> 0


 µ

U

 = −

 v̆

F

 , (3.3.33)

which requires the action of the approximate body mobility matrix (Schur complement),

Ñ =
(
K>M̃†K

)−1

. (3.3.34)
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The approximate body mobility matrix Ñ is also block-diagonal, and can be efficiently

applied for each body,

Ñββ =
(
K>β M†

ββKβ

)−1

. (3.3.35)

The matrix block Mββ in Eq. (3.3.35) is a small matrix with size 2Np × 2Np, which is

precomputed for the reference configuration,

Mref = M
(a)
ref + M

(t)
ref + M

(w)
ref . (3.3.36)

The action of M†
ββ can be efficiently applied by using M†

ref, which is also precomputed using

a dense SVD decomposition or eigenvalue decomposition, and by using rotation matrices

for different bodies because of the translational and rotational invariance of the free-space

Stokeslet,

M†
ββ ≈ RβM

†
refR

>
β . (3.3.37)

We note that the two sides of Eq. (3.3.37) do not equal exactly, since the Alpert quadrature

is not rotation-invariant for a general-shaped body. This is not an issue, since the error

introduced by this artifact is within the error tolerance, and the preconditioner does not need

to be exactly inverted to work effectively.

For the near-field contribution of the random surface velocity, we use the preconditioned

Lanczos algorithm [93] to generate

v̆(r) = G†
(
GM(r)G>

)1/2
W(r), (3.3.38)

where G is a block-diagonal preconditioner, whose diagonal blocks can be precomputed as a

dense matrix for the reference configuration using the eigenvalue decomposition,

M
(r)
ref = VΣV∗, (3.3.39)
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and we set

Gref = (Σ†)1/2V∗ and G†ref = VΣ1/2, (3.3.40)

where the diagonal elements of Σ and Σ† corresponding to the spurious eigenvalues of Σ are

set to be zero. This gives the desired discrete fluctuation-dissipation balance,

〈
v̆

(r)
ref v̆

(r)
ref

〉
= G†refGrefM

(r)G>ref

(
G†ref

)>
= M

(r)
ref . (3.3.41)

Generating v̆(r) as in Eq. (3.3.38) is efficient, since we can reuse the precomputed matrices in

Eq. (3.3.40) throughout the simulation, and apply rotation matrices for each body,

Gββ = RβGrefR
>
β . (3.3.42)

We remark that the use of block-diagonal preconditioners does not increase the overall

complexity of FBIM since they can be applied with O(Nb) work, and, furthermore, the cost

is amortized over the length of the BD simulations.

3.4 Numerical Results

This section presents numerical results of applying the FBIM to a number of benchmark

problems in two dimensions. We first address the effect of the Ewald splitting parameter ξ on

the accuracy of the first-kind mobility solver. We then test the first-kind mobility solver by

applying it to the steady Stokes flow through a square periodic array of disks, and compare

the results to well-known analytical solutions. In the second test, we consider suspensions of

Brownian rigid disks, and assess the effectiveness of FBIM by its accuracy and convergence,

the robustness of iterative solvers, and its scalability to simulate suspensions of many-body

particle systems. In the last set of numerical examples, we perform Brownian Dynamics
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(BD) simulations by combining the FBIM with previously-developed stochastic temporal

integrators [103, 82]. By simulating the free diffusion of a non-spherical (starfish-shaped)

particle, we confirm that correctly handling the stochastic drift term in the temporal integrator

is necessary in order to reproduce the equilibrium Gibbs-Boltzmann distribution. As a simple

but nontrivial benchmark problem for many-body suspension, we investigate the dynamics of

a pair of starfish-shaped particles connected by a harmonic spring, which includes interaction

through the spring potential, hydrodynamic interaction between the particles and with their

periodic images, as well as Brownian noises.

3.4.1 Choosing the Ewald splitting parameter

The first important aspect of FBIM that needs to be addressed is how the choice of ξ

affects the accuracy of the first-kind mobility solver. In the Spectral Ewald (SE) method [77]

the choice of ξ is only based on balancing the computational work between the real- and

Fourier-space sums. In practice, we want to choose a sufficiently large ξ (i.e., a short-ranged

singular kernel G(r)
ξ ), so that the computational work in the real-space can be made cheap at

the expense of the FFT in Fourier space. In this work, we demonstrate that the choice of ξ is

also limited by the accuracy of Alpert quadrature used to resolve the logarithmic singularity

of G (diagonal elements of M).

The Alpert quadrature can be viewed as assigning (interpolated) local correction weights

to nearby quadrature nodes of a target point xt, as illustrated in the left panel of Fig. 3.1. For

example, the number of (one-sided) quadrature nodes with nonzero correction weights is 4 and

8 for the 4th- and 8th-order Alpert quadrature, respectively. Since G(r)
ξ decays exponentially

with length scale ξ−1, the Alpert quadrature grid must resolve length scales smaller than ξ−1

in order to capture the logarithmic singularity of G(r)
ξ at the origin. Thus for a fixed grid, as

ξ increases, we expect the accuracy of the Alpert quadrature to become progressively worse.
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Fig. 3.1: (Left panel) A cartoon illustration of radius of Alpert correction rAlpert and the cut-off
radius of Ewald summation rc. Both blue and red nodes represent the quadrature nodes in the
trapzoidal rule, and the red nodes are the special nodes with Alpert correction weights centered
a target node xt. The radius of Alpert correction is defined by rAlpert = |xt−xf |, where xf is
the last node with Alpert correction weight for a chosen order of Alpert quadrature. (Right
panel) Normalized error (in matrix 2-norm) of N with respect to N (approximated with 12
digits of accuracy) versus the ratio rAlpert/rc for the 4th- and 8th-order Alpert quadratures.
The mobility solver gradually loses accuracy because the singular kernel (with support rc) is
not sufficiently resolved by the Alpert quadrature as the ratio increases.
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To demonstrate this issue, we study how the error of N changes with ξ as follows. We fix

the packing fraction φ = π/16 ≈ 0.196 and Np = 64 but use different values of ξ (i.e., different

rc). The radius of Alpert correction rAlpert is defined by the distance between the target point

xt and the farthest quadrature node xf with nonzero Alpert weight, i.e., rAlpert = |xt − xf |.

Note that rAlpert is fixed once the quadrature order is fixed. The Ewald sum is computed

with accuracy εEwald = 10−9 and the tolerance level of GMRES is εtol = 10−9. The body

mobility matrix N is computed by solving the deterministic mobility problem with force and

torque F set to be the columns of the 3× 3 identity matrix, which gives the corresponding

columns of N . We can also compute the exact body mobility matrix N to 12 digits of

accuracy with Np = 256 by using the second-kind boundary integral formulation (see 3.7

for details). In two dimensions the resulting linear system of the second-kind formulation

is well-conditioned and its solution is spectrally accurate. In the right panel of Fig. 3.1, we

show the normalized error of N (in matrix 2-norm) with respect to the 12-digit accurate

approximation of N for the 4th- and 8th-order Alpert quadrature, and the error increases

by at least two orders of magnitude for the range of rAlpert/rc considered. We conclude that

choosing ξ with rAlpert/rc . 0.6 maintains the accuracy of Alpert quadrature sufficiently well.

3.4.2 Square lattice of disks

Steady Stokes flow around a square periodic array of fixed disks in two dimensions is

one of the classical problems in fluid mechanics, and its analytic solution is a thoroughly

studied topic in the literature. Notably, Hasimoto [86] obtained an analytical expression for

the drag force F on a dilute array of disks moving with velocity U by solving the steady

Stokes equations with Fourier series expansions. Later, Sangani and Acrivos [110] extended

Hasimoto’s solution to the semi-dilute regime by including higher-order correction terms, and
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obtained the expansion

F

ηU
=

4π

− ln
√
φ− 0.738 + φ− 0.887φ2 + 2.039φ3 +O(φ4)

, (3.4.1)

where a is the radius of disk, l is the spacing of the square lattice of disks, and φ = πa2/l2

is the packing fraction. Another important regime for which there are theoretical solutions

is the densely-packed regime. In this regime, the disks almost touch, so that there is flow

through a narrow gap between two neighboring disks, and a lubrication correction is generally

required to extend the solution to this regime. Sangani and Acrivos [111] obtained using

lubrication theory the asymptotic formula

F

ηU
≈ 9π

2
√

2
ε−

5
2 (3.4.2)

where ε = (l − 2a)/l = 1−
√

4φ/π is the relative gap between two neighboring disks.

In the following test, we numerically solve the Stokes mobility problem (3.2.23) for the

rigid body motion U with applied force and torque F = (1, 0, 0) to determine the relationship

between the drag force and velocity. We set a = 1.0 and εEwald = εtol = 10−9, while varying

the length of square lattice l to achieve different packing fractions. For this simple test

problem, we do not seek to optimize code performance, and we set Nbox = 42 (ξ ≈ 20.13)

for all the test cases. In Sec. 3.4.3 we will address the choice of optimal ξ in the example

of dense suspension of rigid particles. For a dilute or semi-dilute suspension (φ < 0.2), the

boundary Γ is discretized with Np = 64 quadrature nodes, which is a sufficient resolution

for the first-kind solver to give at least 6 digits of accuracy. For a higher packing fraction

(φ > 0.2), the number of quadrature nodes is determined by the ratio of the smallest gap

between any two neighboring disks dg = l − 2a to the spacing between quadrature nodes

ds = 2πa/Np. In a moderately-resolved computation, we require that the quadrature node
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Fig. 3.2: The drag coefficients for a square periodic array of disks in steady Stokes flow, (Left
panel) as a function of packing fraction φ, and compared to the dilute theory (3.4.1); (Right
panel) as a function of the relative gap between disks ε, and compared to the dense theory
(3.4.2). In both panels, the numerical results obtained from the first-kind solver with Alpert
quadrature match very well with the spectrally-accurate results from the second-kind solver
(see 3.7).

spacing is comparable or smaller than the gap spacing, i.e., ds/dg . 1. For example, for

the highest packing fraction considered in this test φ = 0.76 (note that for a close-packed

square lattice φmax ≈ 0.7854), the number of quadrature nodes set by the ratio ds/dg = 1 is

Np ≈ 190.

The linear system (3.3.8) is solved by GMRES with block-diagonal preconditioning.

Numerical results for the normalized drag force over a broad range of packing fractions are

shown in Fig. 3.2. We have obtained very good agreement with the dilute theory (3.4.1)

(φ < 0.2). For the dense packing fractions, the dilute theory no longer provides a good

description for the drag, but our solutions from the first-kind solver match the dense theory

(3.4.2) very well, as shown in the right panel of Fig. 3.2. The solutions from the first-kind

solver are also in excellent agreement with the highly-accurate solutions ( at least 9 digits of

accuracy) from the second-kind solver for the range of packing fractions considered.
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3.4.3 Suspension of Brownian rigid disks

In this section our primary goal is to study the performance of FBIM applying to

suspensions of Brownian rigid particles in two dimensions. We will assess the effectiveness

of FBIM from three aspects: accuracy and convergence, robustness of iterative solvers, and

its efficiency and scalability to many-body particle systems. For simplicity, we focus on

suspensions of disks only, however, there is no significant difficulty in applying the FBIM

to more general bodies. In the top panel of Fig. 3.3, we show two random configurations of

Nb = 100 disks with different packing fractions: a dilute suspension with φ = 0.25 and a

dense suspension with φ = 0.5. These configurations are generated by using an event-driven

molecular dynamics code. Since the random disks may nearly touch in the absence of

(electrostatic) repulsive forces, especially when the packing fraction is high, we first generate a

random configuration of disks with radius a0 at a higher packing fraction φ0, and then adjust

the actual radius of disks a to achieve the desired packing fraction φ. In this approach, the

pairs of random disks are separated by a relative minimum distance dmin/a = 2
(√

φ0/φ− 1
)

.

For the dilute suspension (φ = 0.25), we use φ0 = 0.4 so that dmin/a ≈ 0.523, and for the

dense suspension (φ = 0.5), we use φ0 = 0.6 so that dmin/a ≈ 0.191.

First, we investigate the accuracy and convergence of the first-kind mobility solver by

applying it to the random configurations of disks shown in Fig. 3.3, subject to random

forces and torques F (without random surface velocity v̆). In the first-kind mobility solver,

we set εEwald = εtol = 10−9, and choose the splitting parameter ξ ≈ 50 (or Nbox = 102).

Although this value of ξ does not achieve the minimum CPU time (see Fig. 3.5), it ensures

rAlpert/rc . 0.5 for the 8th-order Alpert quadrature, so that the singularity is sufficiently

resolved in all test cases for convergence study purpose. For this set of computations, we

consider different numbers of quadrature nodes, or degrees of freedom (DOFs) per body,

Np ∈ {16, 32, 64, 128}. The normalized error of U = NF is computed with respect to a
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12-digit accurate solution computed from the second-kind solver with 256 DOFs per disk.

For the dilute suspension (bottom left panel of Fig. 3.3), the second-kind solver converges

spectrally fast and is more accurate than the solutions from the first-kind solver. For the

dense suspension (bottom right panel of Fig. 3.3), while the second-kind solver converges

faster and gives more accurate solutions for large number of DOFs per body, the first-kind

solver is more accurate for low resolutions. This can be explained as follows. When two disks

nearly touch, the singular kernel of the first-kind integral (Stokeslet) grows as log r, but the

singular kernel of the second-kind integral (stresslet) grows as r−1 in two dimensions. This

observation implies that the first-kind mobility solver is more practical than the second-kind

solver for simulating suspensions of rigid particles with high packing fractions, since it can

produce sufficiently accurate solutions with a smaller number of DOFs per body.

Next, we study the robustness of iterative methods for solving the saddle-point linear

system (3.3.8). For the random configurations shown in Fig. 3.3, in addition to random forces

and torques, we also generate random surface velocity v̆ = M1/2W, and include it on the

right-hand-side of Eq. (3.3.8). We show in the inset of Fig. 3.4 the residual versus the number

of GMRES iterations for solving Eq. (3.3.8) with block-diagonal preconditioning. It would

take more than 3 times the number of GMRES iterations to converge to the same tolerance

level without preconditioning. In general, when the packing fraction grows or when two disks

get closer, the hydrodynamic interaction between the disks becomes stronger, and hence, the

condition number of the linear system grows. As a result, it requires more GMRES iterations

for the dense suspensions, as expected. The number of GMRES iteration is independent of

ξ, since the choice of ξ does not change M = M(r) + M(w) in the linear system (3.3.8). We

expect that GMRES will converge faster for three-dimensional problems because the Stokeslet

decays faster (r−1 in the far field) in three dimensions. We also show in Fig. 3.4 the residual

versus the number of Lanczos iterations for generating (M(r))1/2W(r) with block-diagonal

preconditioning, for different values of ξ. The number of Lanczos iterations decreases with ξ
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Fig. 3.3: (Top panel) Two random configurations of 100 rigid disks with packing fractions
φ = 0.25 (dilute) and φ = 0.5 (dense) in a periodic unit cell. (Bottom panel) Normalized
error of the mobility U = NF versus number of degrees of freedom (DOFs) per disk. For
the dilute suspension, the second-kind solver converges spectrally fast and is generally more
accurate than the first-kind solver. For the dense suspension, while the second-kind solver
converges faster, the first-kind solver is actually more accurate at lower DOFs per disk.
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for both the dilute and dense suspensions. This can be explained by the observation that G(r)
ξ

becomes more short-ranged as ξ increases, and therefore, the block-diagonal preconditioner

gets progressively better in approximating the inverse of (M(r))1/2.

We now present profiling and scaling analysis of FBIM. First, we present the profiling

results of FBIM and its algorithmic components in Fig. 3.5, and analyze the optimal choice

of the splitting parameter ξ. We focus on the densely-packed configuration with 64 DOFs per

disk (ds/dg ≈ 0.5), and use the 4th-order Alpert quadrature. The accuracy of the first-kind

mobility solver with these parameters is about 10−5 (see bottom right panel of Fig. 3.3),

so we set εEwald = εtol = 10−6. We note that the execution time depends heavily on the

choice of programming language, implementation and hardware. Our proof-of-concept serial

implementation of FBIM in two dimensions is written in MATLAB with some subroutines

accelerated by C with the aid of MEX files. As previously discussed in Sec. 3.3, the

main ingredients of FBIM are evaluating the matrix-vector products M(r)µ and M(w)µ

in GMRES, and generating (M(r))1/2W(r) and (M(w))1/2W(w) using the Lanczos iteration.

In our implementation, we found it optimal to export and store M(r) sparsely for rapid

matrix-vector multiplication in Lanczos and GMRES. In our profiling analysis, we profile the

time to export M(r) sparsely, the cumulative time to evaluate M(r)µ and M(w)µ in GMRES

separately, the time to generate (M(r))1/2W(r) and (M(w))1/2W(w) separately, and the total

execution time of FBIM. We note that the total execution time of FBIM also includes the time

of applying the preconditioners and other overhead time. The left panel of Fig. 3.5 shows the

profiling results of the densely-packed configuration for different values of ξ. First, we observe

that our implementation of FBIM is dominated by two subroutines: exporting M(r) and

evaluating M(w)µ (iteratively). The CPU time of the sparse matrix-vector product M(r)µ

and generating (M(w))1/2W(w) (non-iteratively) is negligible. The CPU time for generating

(M(r))1/2W(r) is also small because of the rapid matrix-vector multiplication of the sparse

matrix M(r). The CPU time for generating (M(r))1/2W(r) also includes the time for applying
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Fig. 3.4: Convergence of the Lanczos iteration for generating (M(r))1/2W(r) and the GMRES
iteration (inset) for solving the saddle-point linear system Eq. (3.3.8) with block-diagonal
preconditioning for both iterative solvers. Generally, it requires more GMRES iterations for
the dense packing (φ = 0.5), as shown in the inset. The number of GMRES iteration does
not depend on ξ, since the choice of ξ does not change M in the linear system (3.3.8). The

number of Lanczos iteration decreases with ξ, since the real-space kernel G(r)
ξ becomes more

short-ranged as ξ increases, and therefore, the block-diagonal preconditioner gets progressively
better in approximating the inverse of (M(r))1/2.
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the preconditioner, which accounts for about 20% - 30% of the computational work.

Generally, the execution time of the real-space subroutines decreases with ξ, because the

amount of work in the real space reduces as G(r)
ξ becomes more short-ranged with ξ. On the

other hand, the execution time of Fourier-space subroutines remains almost constant for the

range of ξ considered in this test. This is because the cost of grid operations in Fourier-space

sums (spreading/interpolation of a Gaussian to grid in NUFFT) dominates the cost of FFT

in two dimensions. We expect the FFT cost would eventually become dominant in three

dimensions. In our implementation, we observe that even the total CPU time of FBIM

decreases with ξ, whereas Fiore et al. [57] report an optimal ξ for their GPU implementation

of the PSE method in three dimensions. There is a wide range of ξ that approximately

minimizes the total CPU time (from ξ ≈ 70 to ξ ≈ 100), as shown in the left panel of Fig. 3.5.

We recall, however, that the choice of ξ in FBIM is also limited by the accuracy of Alpert

quadrature. Using the criterion that rAlpert/rc . 0.6 for the densely-packed configuration, we

obtain that ξ . 150 for the 4th-order Alpert quadrature, and that ξ . 75 for the 8th-order

Alpert quadrature. Similar optimal range of ξ is also obtained in the profiling analysis for

the dilute configuration.

Another important computational aspect that needs to be addressed is how the FBIM

scales as the number of rigid particles grows while the packing fraction is held fixed. This

aspect of FBIM is particularly important for applications involving a large number of particles.

In the right panel of Fig. 3.5, we report the total execution time of FBIM with increasing

number of rigid disks, while the packing fraction is held fixed at φ = 0.25 and φ = 0.5, and ξ

is also fixed (ξ ≈ 70) for both configurations. We conclude that FBIM scales linearly in the

number of rigid particles for both dilute and dense suspensions.
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Fig. 3.5: (Left panel) Execution time of FBIM and its algorithmic components versus ξ for the
dense packing φ = 0.5. In our implementation, the computational work of FBIM is dominated
by the subroutines for exporting M(r) sparsely and for evaluating the matrix-vector product
M(w)µ (iteratively in GMRES). The total execution time of FBIM decreases with ξ, and the
minimum CPU time is achieved near ξ ≈ 70, where the CPU time for exporting M(r) and
evaluating M(w)µ crosses. (Right panel) Linear scaling of FBIM with growing number of
disks in the suspension, while the packing fraction is held fixed.

3.4.4 Brownian dynamics of rigid particles

In the following tests, we combine the FBIM with stochastic temporal integrators to

perform Brownian Dynamics (BD) for rigid particles. Applying the weakly first-order accurate

Euler-Maruyama (EM) scheme to Eq. (3.2.6), we obtain the BD algorithm,

Qn+1 = Qn + ∆tNnF n +
√

2kBT∆t (Nn)
1
2 Wn

+ ∆t
kBT

δ

[
N

(
Qn +

δ

2
W̃n

)
W̃n −N

(
Qn − δ

2
W̃n

)
W̃n

]
,

(3.4.3)

where ∆t is the time step size, the superscript denotes the time step level at which quantities

are evaluated (e.g., Qn = Q(t = n∆t) and Nn = N(Qn)), δ is a small parameter, and Wn

and W̃n are uncorrelated vectors of i.i.d standard Gaussian random variables.

The last term in Eq. (3.4.3) is a centered random finite difference (RFD) approximation

to the stochastic drift term that is equal in expectation to (∆t kBT )(∂Q ·N )n for sufficiently

small δ [82, 94, 95]. The RFD term guarantees that the EM scheme is a consistent stochastic
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integrator of Eq. (3.2.6), but is simpler and more efficient in practice than the Fixman midpoint

scheme [102], in which the action of N−
1
2 is required. The choice of δ is determined by a

balance between truncation and roundoff error in the centered RFD, which gives δ/a ∼ ε1/3,

where ε is the accuracy of the matrix-vector product NF and a is the characteristic length

of the particle. We note that the EM scheme requires solving the saddle-point linear system

(3.3.8) three times: once for generating the velocity NnF n +
√

2kBT/∆t (Nn)
1
2 Wn, and

twice for the RFD approximation.

The EM scheme is not particularly accurate even for the deterministic motion. Another

weakly first-order accurate temporal integrator that has been observed to give a better

accuracy is the stochastic Adams-Bashforth (AB) scheme [95],

Qn+1 = Qn + ∆t

(
3

2
NnF n − 1

2
Nn−1F n−1

)
+
√

2kBT∆t (Nn)
1
2 Wn

+ ∆t
kBT

δ

[
N

(
Qn +

δ

2
W̃n

)
W̃n −N

(
Qn − δ

2
W̃n

)
W̃n

]
,

(3.4.4)

in which the deterministic mobility NF in Eq. (3.2.6) is approximated by the second-order

Adams-Bashforth approximation. We observe, however, that the AB scheme is more expensive

to use in practice, because it requires four mobility problem solves instead of three in the

EM scheme. More efficient schemes can be developed but are not the focus of our work [104].

3.4.4.1 Free diffusion of a single starfish

We consider a starfish-shaped particle freely diffusing (i.e., no applied force and torque) in

a periodic unit lattice. A similar benchmark problem was studied by Delong et al. [82] using

the FIB method, and by Delmotte et al. [84] using the FCM method for a single spherical

particle in a periodic domain. In their case the body mobility matrix does not depend on the

position of the particle, and therefore ∂Q ·N = 0. However, for a starfish N depends on

orientation due to interactions with periodic images and ∂Q ·N is nonzero.
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(a) (b)

Fig. 3.6: (Left panel) A single starfish particle with four-fold rotational symmetry, described
by the position of tracking point q and its rotation θ. (Right panel) Equilibrium position for
a pair of starfish particles connected by a harmonic spring. The enclosing box is the periodic
unit cell.

The starfish particle has four-fold rotational symmetry (left panel of Fig. 3.6), and is

described by

Γ : (x(s), y(s)) = rs(1 + b cos(4s)) · (cos s, sin s), s ∈ [0, 2π], (3.4.5)

where the characteristic length of the starfish particle is its maximum radius a = rs(1 + b).

In the continuum setting, the body mobility matrix of the four-fold starfish particle is a

diagonal matrix and depends only on the rotation θ, i.e.,

N (θ) =


Nxx(θ)

Nyy(θ)

Nθθ(θ)


, (3.4.6)

where Nxx, Nyy and Nθθ are the rotational and translational self-mobilities. Because of the
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symmetry of the starfish particle, we also have Nxx = Nyy. The elements of N (θ) can be

computed to 12 digits of accuracy using the second-kind solver by solving the deterministic

mobility problem with F set to be the columns of the identity matrix for different θ.

Applying the EM scheme without RFD to the freely-diffusing starfish particle, we obtain

the biased scheme,

Qn+1 = Qn +
√

2kBT∆t(Nn)
1
2 Wn. (3.4.7)

In the limit ∆t→ 0, the biased scheme Eq. (3.4.7) is consistent with the Ito SDE

dQ

dt
=
√

2kBT∆t (N (θ))
1
2 W(t)

= −N (θ)(∂QŨ) +
√

2kBT∆t (N (θ))
1
2 W(t) + (kBT )∂Q · (N (θ)),

(3.4.8)

where the bias potential is Ũ (Q = {q, θ}) = kBT log(Nθθ). By examining the corresponding

Fokker-Plank equation, we can show that the biased SDE (3.4.8) preserves the biased

equilibrium distribution

P̃eq(Q) ≡ P̃eq(θ) = Z−1 exp
(
−Ũ(θ)/kBT

)
= (ZNθθ)−1 . (3.4.9)

We note that the correct Gibbs-Boltzmann distribution preserved by the unbiased scheme

(EM with RFD) is a uniform distribution Peq(Q) = constant.

In our computation, we set b = 0.3 and a = 1.3rs = 0.45, which gives a relatively high

packing fraction φ ≈ 0.393 for the starfish particle, in order to amplify the difference between

the biased distribution P̃eq and the correct Gibbs-Boltzmann distribution Peq (see left panel

of Fig. 3.7). The starfish particle is discretized by Np = 64 quadrature points using the

4th-order Alpert quadrature. In the first-kind mobility solver, we set the error tolerance level

ε = 10−7. The RFD parameter δ is set by δ/a ∼ ε1/3. The short-time translational χtrans and
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rotational χrot diffusion coefficients are determined by the Stokes-Einstein relations,

χtrans = kBT 〈Nxx〉 ≈ 2.47× 10−3,

χrot = kBT 〈Nθθ〉 ≈ 2.081× 10−1,

(3.4.10)

where the average 〈·〉 is taken with respect to the equilibrium distribution. We use a small

time step size ∆t = 0.02 to minimize truncation errors, and each simulation is run for T = 100,

where τrot is the rotational Brownian time scale.

Figure 3.7 shows the estimated biased and unbiased equilibrium distributions (with error-

bars of 2 standard deviations) obtained from 600 independent trajectories of the starfish

particle freely diffusing in a periodic unit lattice. The numerical results using EM without RFD

indeed match the biased equilibrium distribution P̃eq(θ), whereas EM with RFD preserves

the correct Gibbs-Boltzmann distribution at equilibrium. In the right panel of Fig. 3.7, we

compare the translational mean square displacement (MSD) for the biased and unbiased

schemes, and also compare to the Einstein formula

〈
||q(t+ s)− q(t)||2

〉
= 4kBT 〈Nxx〉 t, (3.4.11)

where the average 〈·〉 is taken with respect to the biased and unbiased equilibrium distribution,

respectively. We conclude that consistent approximation to the stochastic drift term, such

as the RFD approximation, is not only important for the equilibrium dynamics, but is also

necessary for producing the short-time dynamics (MSD) correctly.

3.4.4.2 A pair of interacting starfish

In this test, we perform BD simulation of a pair of starfish particles connected by a

Hookean spring with rest length ls in a periodic square lattice of length l = 2 (right panel of

Fig. 3.6). The two starfish particles interact through the spring connecting the two tracking
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Fig. 3.7: (Left panel) Equilibrium probability distribution of a single starfish particle freely
diffusing in a periodic square lattice. The EM scheme without RFD produces a biased
equilibrium distribution, and matches the theory Eq. (3.4.9) (solid). The EM scheme with
RFD produces the correct Gibbs-Boltzmann distribution (dashed). (Right panel) Translational
mean square displacement (MSD) for the freely-diffusing starfish particle using the biased
and unbiased EM schemes.

points q1, q2 via a potential Uspring, and the rotation of each particle is also attached to a

preferred angle through a harmonic potential Urot(θ). The total potential U(Q) is given by

U(Q) = U(q1, θ1, q2, θ2)

= Uspring(q1, q2) + Urot(θ1) + Urot(θ2)

=
ks
2

(|q1 − q2| − ls)2 +
kθ
2

(
θ1 −

π

4

)2

+
kθ
2

(
θ2 −

π

2

)2

,

(3.4.12)

where ks, kθ are the stiffness coefficients. In the equilibrium, the Gibbs-Boltzmann preserved

by Eq. (3.2.6) with F = −∂QU is

Peq(Q) ∝ exp (−U(Q)/kBT )

∝ exp

(
−Uspring(q1, q2)

kBT

)
·N

(
π

2
,
kBT

kθ

)
·N

(
π

4
,
kBT

kθ

)
,

(3.4.13)
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where N (µ, σ2) denotes the normal distribution with mean µ and variance σ2.

In the computation, each particle has size a/l = 1.3 rs/l = 1/12, and is discretized by

Np = 48 quadrature points using the 4th-order Alpert quadrature. The spring rest length is

ls = 5a and the stiffness coefficient ks is set based on the criterion that 3 standard deviations

of the distance d = |q1 − q2| is approximately 2a, i.e., 3
√
kBT/ks ≈ 2a, so that the particles

very rarely overlap. The presence of harmonic springs defines the spring relaxation time

scales,

τs =
1

ks〈Nxx〉
and τθ =

1

kθ〈Nθθ〉
, (3.4.14)

where Nxx and Nθθ are the translational and rotational self-mobilities of a single particle,

which can be computed with high accuracy using the second-kind solver. The value of

the parameters are ks = 81, kθ ≈ 2.446, and τs = τθ ≈ 0.1189. Recall that the dominant

computational work of FBIM is to compute the mobility NF (see left panel of Fig. 3.5). To

reduce the amount of computational work, we found that solving the mobility problems in

RFD with a lower tolerance level ε = 10−3 while maintaining a higher tolerance ε = 10−6

in the deterministic mobility does not introduce any observable statistical errors in the

computation.

In Fig. 3.8, we compare errors of the mean and covariance of θ1, θ2 and the distance

d = |q1−q2| with respect to the equilibrium statistics calculated analytically from Eq. (3.4.13).

The numerical results are generated from 16 independent trajectories with length T ≈ 14.86.

We observe in Fig. 3.8 that AB2 is more accurate than EM (see the panel that shows cov(d, d)).

We also observe that the cross covariances are statistically indistinguishable from zero for

sufficiently small time step sizes, indicating that the distance between particles and their

rotations are uncorrelated, as expected from the equilibrium distribution Eq. (3.4.13).
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Fig. 3.8: Error bars (with two standard deviations) of the mean and covariance of distance
between two tracking points d = |q1 − q2| and rotations θ1, θ2 for a pair of starfish particles
interacting with the potential Eq. (3.4.12). The numerical results are produced using the EM
and AB schemes, with both including the RFD term. The AB scheme is more accurate than
the EM scheme for cov(d, d). The cross covariances are statistically indistinguishable from
zero, indicating the particle positions and their rotations are uncorrelated, as expected from
the equilibrium distribution Eq. (3.4.13).
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3.5 Conclusions

In this chapter we presented a fluctuating boundary integral method (FBIM) for simulating

the overdamped Brownian Dynamics (BD) of rigid particles of complex shape in periodic

domains. To the best of our knowledge, it is the first boundary integral method that accounts

for Brownian motion of nonspherical particles immersed in a viscous incompressible fluid. Its

main advantages are that particles of complex shape can be directly discretized with a surface

mesh, and the deterministic mobility of the particles can be computed with high accuracy by

using high-order singular quadrature techniques. Importantly, the Brownian displacements of

the particles are computed along the way with only a marginal increase in the overall cost,

and strictly satisfy discrete fluctuation-dissipation balance. To accomplish this, instead of

adding a stochastic stress tensor to the fluid equations as done in fluctuating hydrodynamics,

we eliminated the fluid in the spirit of boundary integral representations. This lead to a

Stochastic Stokes Boundary Value Problem (SSBVP) in which we prescribed a random surface

velocity distribution that has covariance proportional to the (periodic) Stokeslet. We found

that using a first-kind boundary integral formulation is simplest since the first-kind integral

operator inherits the SPD property from the Green’s function for Stokes flow. The matrix

discretizing the single-layer operator directly gives the covariance of the required fluctuating

surface velocity, including a suitable handling of the singularity of the Oseen tensor. While

formal analysis suggests that second-kind boundary integral methods are to be preferred

over first-kind methods, we found that first-kind methods can be more accurate for dense

suspensions, and showed that a simple block-diagonal preconditioner can effectively handle

the ill-conditioning of the first-kind formulation. We confirmed through different benchmark

problems that FBIM can efficiently compute both deterministic and Brownian motion of

rigid particles in accordance with the order of accuracy of the singular quadrature scheme.

Our preconditioned iterative solvers (GMRES and Lanczos) converged within a small number
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of iterations and only grew slowly with the packing fraction. We also confirmed that the

computational cost of FBIM scales linearly with the number of particles, even for moderately

dense packing fractions. Finally, we coupled FBIM with stochastic temporal integrators, and

showed that it reproduced the correct equilibrium Gibbs-Boltzmann distribution of Brownian

suspensions of particles of complex shape.

The FBIM presented in this work is a only a first step toward the overarching goal of

performing accurate, efficient and robust BD simulations of a large collection of rigid particles

of complex shape. Our proof-of-concept implementation of FBIM and numerical examples

were presented in two spatial dimensions only. The continuum formulation of FBIM, which

generates both deterministic and stochastic velocities in agreement with Eq. (3.2.20), applies

directly to three dimensions. In principle, our discrete formulation of FBIM can also be

extended to three spatial dimensions. This extension requires, however, developing a suitable

quadrature rule for the single-layer potential. While in two dimensions we were able to

use the trapezoidal rule as the underlying quadrature rule and apply Alpert corrections

to account for the singularity of the Oseen tensor, in three dimensions these pieces need

to be developed anew. First, a suitable discretization of the particles’ surfaces (e.g., using

higher-order triangular elements) and a suitable non-singular quadrature rule need to be

developed. For special particles shapes, notably spheres or spheroids, one can use specially

chosen surface grids with the trapezoidal rule [5, 6]; however, for general particle shapes

it is not straightforward to achieve spectral accuracy. One of the desired properties of the

quadrature rule is to ensure that the far-field component of the discrete single-layer matrix

M is symmetric and positive definite. In particular, we expect that a good quadrature

rule would yield the SPD matrix M = ΨGΨT , where Gij = G(xi,xj), and Ψ encodes

the quadrature weights and mesh connectivity. Second, a singular quadrature near-field

correction for the single-layer kernel needs to be constructed. A recently developed option is

quadrature-by-expansion (QBX) [89, 90]. Recently, af Klinteberg and Tornberg [6] applied
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QBX to simulate a collection of non-Brownian spheroids immersed in a Stokes flow; however,

the generalizations to more complex particle shapes requires an underlying, high-order smooth

quadrature rule.

A particular challenge in developing singular quadrature schemes is preserving underlying

symmetry properties of the single layer operator. Namely, the single layer integral operator is

SPD and is rotationally invariant, meaning that if the body is rotated the result of applying

the operator is also rotated in the same way. The Alpert quadrature correction used in this

work gives a banded high-order log-singularity correction for the near-field component of M

that is neither symmetric, nor positive definite, nor rotationally invariant. We found all of

these artifacts to be numerical errors below the order of accuracy of the quadrature scheme,

as expected. However, it would be much better to have a singular quadrature scheme that

does not have such unphysical artifacts by construction. The traditional focus in boundary

integral methods has been on achieving higher-order accuracy. What is more important for

Brownian suspensions is preserving physical properties of the continuum operators in their

discrete “mimetic” counterparts, so that even coarse resolutions give physically-consistent

(even if not very accurate) discretizations.

We note that a Galerkin boundary integral formulation combined with a multipole

expansion has been used by Singh and Adhikari and collaborators to model an active

suspensions of spherical particles in an unbounded domain [112]. In some sense, this is an

extension of the traditional Stokesian Dynamics method to include moments higher than the

stresslet, as necessary to account for active flows. Recently the method has been extended to

include Brownian contributions and to account for confinement near a no-slip boundary [113].

While also based on a boundary integral formulation, this class of methods differs in significant

ways from the one proposed here. Most importantly, our approach uses numerical quadrature

instead of analytical integration, and therefore generalizes to arbitrary (smooth) particle

shapes. Furthermore, we do not truncate a multipole hierarchy at a small number of moments
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(say, after the dipole or quadrupole contribution), which can lead to uncontrolled loss of

accuracy when the dilute approximation is no longer valid. In the FMM-accelerated boundary

integral method, the number of terms used in multipole expansions is chosen to achieve a

user-specified tolerance in the far field. High-order quadrature is used to achieve the same

tolerance in the near field. That said, generalizations of FBIM to three dimensions require

a nontrivial amount of effort, and for spherical particle the Galerkin approach mentioned

above may be an effective alternative that yields sufficiently accurate answers in practice.

Another key aspect of Brownian Dynamics simulations is the temporal integration schemes.

There are three main challenges in this regard. The first is that in three dimensions orientation

cannot be represented by a vector. This can most straightforwardly be handled by using

normalized quaternions to represent particle orientation, as shown in [94]. In the end, as long

as a method to compute particle velocities in agreement with Eq. (3.2.20) is provided, handling

the quaternion constraint simply amounts to using quaternion multiplication, rather than

addition, to update orientations [94, 104]. The second challenge is capturing the stochastic

drift term proportional to the divergence of the body mobility matrix using linear-scaling

iterative methods. In this work we used methods that perform random finite difference

on the body mobility. This requires solving two mobility problems per time step just to

capture the stochastic drift term, therefore at least doubling the cost of a time step. In

future work we will describe novel temporal integrators that can be used with FBIM to

give more accurate answers for larger time step sizes, and which use only a single mobility

solve to capture the stochastic drift term [104]. A third challenge is to handle the fact that

Brownian displacements can lead to overlaps between the particles, even for small time

step sizes. Unlike the rigid multiblob method [23], which builds on a regularized first-kind

boundary integral formulation, traditional boundary integral methods based on singular

quadratures break down when particles overlap. Even if particles do not overlap, unless the

surface discretization is refined adaptively (which would be too costly for denser suspensions),
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traditional boundary integral representations will give unphysical answers that can easily

lead to breakdown especially in the presence of noise. A possible solution to this is to use a

regularization of the formulation for particle gaps below the resolution of the method. This

is done naturally in the rigid multiblob method [104], and also more recently in a Galerkin

multipole method [113], by using the Rotne-Prager-Yamakawa regularization of the Oseen

tensor.

Another important direction of future work is to extend FBIM to model Brownian

suspensions in other geometries, notably in unbounded domains. One option is to adapt

our method to use a newly developed spectral Ewald summation for the free-space Stokeslet

[114]. We note, however, that the computational cost of the FFTs in Ewald-type methods

may become non-trivial for three dimensional problems. A challenge of great interest is

incorporating the Fast Multipole Method (FMM) to generate the random surface velocity, thus

developing a grid-free (near) linear-scaling method for Brownian suspension in an unbounded

domain. For simple confined geometries, such as colloids sedimented in the vicinity of a single

no-slip wall, one can use known analytical Green’s functions for Stokes flow as done in [113].

It turns out that because of the more rapid decay of the Green’s function in the presence of a

wall, iterative methods can efficiently generate the random surface velocity without requiring

special handling of the far-field interactions [95]. Nevertheless, achieving both linear scaling

and controlled accuracy are challenges even in such simple geometries. For finite domains of

more complicated geometry, one can discretize the domain boundary explicitly [115], and

then employ the free-space Spectral Ewald method [114].
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3.6 Appendix: Body mobility matrix and Lorentz re-

ciprocal theorem

In this appendix we derive the following expression for elements of the body mobility

matrix N in terms of the periodic Green’s function G(x,y) of the Stokes equation,

(N )ij ≡ Nij =

∫
Γ

∫
Γ

λ(j)(x) ·G(x,y) · λ(i)(y) dSy dSx, (3.6.1)

where the precise definition of λ(i),λ(j) appears later.

For simplicity, we consider only a single rigid body Γ immersed in a Stokes fluid with

periodic boundary conditions. The generalization of (3.6.1) to account for many bodies is

straightforward. First, we recall that, the mobility problem that solves for the the translational

velocity u and the rotational velocity ω of the body, in response to the force f and torque τ

exerted on the body is described by steady Stokes equation with no-slip boundary condition,

and force and torque balance conditions:

−∇ · σ = ∇π − η∇2v = 0,

∇ · v = 0,

v(x) = u+ ω × (x− q), ∀x ∈ Γ,∫
Γ

λ(x) dSx = f and

∫
Γ

(x− q)× λ(x) dSx = τ ,

(3.6.2)

where η is the fluid viscosity, σ the fluid stress tensor, and v is the fluid velocity, respectively.

Here λ = (σ · n)(x) is the surface traction of the body with n being the unit normal vector

to the surface. The mobility problem (3.6.2) can be viewed as a linear mapping

U = NF , (3.6.3)
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where N is the body mobility matrix that relates the rigid body motion U = {u,ω} to the

applied force and torque F = {f , τ}.

Let {v(i),σ(i),u(i),ω(i)} and {v(j),σ(j),u(j),ω(j)} denote the solutions to the mobility

problem (3.6.2) with applied force and torque F = {f (i), τ (i)} = e(i) and F = {f (j), τ (j)} =

e(j) respectively. Here e(i) and e(j) are the standard basis vectors (in two dimensions,

e(i) ∈ R3). It is not difficult to see that U (j) = {u(j),ω(j)} corresponds to the jth column of

N . It is understood that whenever the force or torque is made dimensionless in the canonical

problem, the other quantities’ dimensions are adjusted accordingly. Thus, if the force is made

dimensionless, velocities have units of the force-velocity mobility, while the tractions have

units of inverse area. If the torque is made dimensionless, then the velocities have units of

the torque-velocity mobility and the tractions have units of inverse length.

Invoking the Lorentz Reciprocal Theorem (LRT) [1] and eliminating boundary terms arise

from integration-by-parts using periodic BCs, we obtain

∫
Γ

v(i) · λ(j) dS =

∫
Γ

v(j) · λ(i) dS. (3.6.4)

After substituting the no-slip BC for v(j) on the RHS of (3.6.4), and make use of the force

and torque balance condition for λ(i), we obtain that

∫
Γ

v(i) · λ(j) dS =

∫
Γ

[
u(j) + ω(j) × (x− q)

]
· λ(i) dSx

= u(j) · f (i) + ω(j) · τ (i)

= U (j) · e(i) = Nij.

(3.6.5)

We recall that v(i)(x) for x ∈ Γ can be written as

v(i)(x) =

∫
Γ

G(x,y) · λ(i)(y) dSy, x ∈ Γ, (3.6.6)
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where G is the Green’s function of the Stokes equation with unit viscosity and periodic

BCs (periodic Stokeslet), as dictated by the first-kind boundary integral formulation of the

mobility problem [1]. Lastly, we substitute (3.6.6) for v(i) on the LHS of (3.6.5) to conclude

that

Nij =

∫
Γ

∫
Γ

λ(i)(x) ·G(x,y) · λ(j)(y) dSy dSx. (3.6.7)

3.7 Appendix: A completed second-kind formulation

in two dimensions

In this appendix we present a completed second-kind boundary integral formulation of the

deterministic Stokes boundary value problem (3.2.13), as used to compute highly-accurate

reference results in the main body of the chapter (see Sec. 3.4 ). We reproduce this formulation

here for the benefit of the reader, since the full formulation is not contained in published

work to our knowledge. Using a double-layer integral representation of the Stokes flow[1], we

can write the exterior flow velocity v(x ∈ E) in terms of an unknown double-layer density

ϕ(x) as

v(x ∈ E) = (DΓϕ)(x) + (G[q]f)(x) + (R[q]τ)(x), (3.7.1)

where DΓ is the double-layer integral potential, G[q] and R[q] are the Stokeslet and rotlet

at q, respectively. In two dimensions, these operators are defined as

(DΓϕ)j(x) =
1

4πη

∫
Γ

Tjlm(x− y + p)nm(y)ϕl(y) dSy, (3.7.2)

(G[q]f)j(x) =
1

4πη
Gjl(x− q)fl, (3.7.3)

(R[q]τ)j(x) =
1

4πη
Rj(x− q)τ, (3.7.4)
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where Gjl, Tjlm and Rj are the free-space Stokeslet, stresslet, and rotlet with unit viscosity,

respectively. In two dimensions,

Gjl = −δjl log r +
xjxl
r2

, Tjlm = −4xjxlxm
r4

, Rj =
x⊥j
r2
, (3.7.5)

where x⊥ = (x2,−x1). It is well-known that the double-layer representation by itself cannot

represent a flow that exerts force and torque. Therefore, a completion flow is generally

required to complete the representation. The choice of completion flow is not unique [91],

and for simplicity, we use the completion flow proposed by Power and Miranda [116], that

is generated by a Stokeslet with applied force f at the tracking point q inside the particle,

denoted as G[q]f , and a rotlet with torque τ (a scalar quantity in two dimensions), denoted as

R[q]τ . We note that it is possible to avoid this kind of completion and still get a second-kind

integral equation for the mobility problem [3, 4].

Taking the limit as x approaches the boundary Γ and using the jump condition for the

double-layer potential [1], we obtain a second-kind boundary integral equation of the unknown

translational and angular velocities {u, ω} and the double-layer density ϕ,

u+ ω(x− q)⊥ =
1

2
ϕ(x) + (DΓϕ)(x) + G[q]f + R[q]τ, ∀x ∈ Γ, (3.7.6)

and Eq. (3.7.6) is closed by relating {u, ω} to ϕ via7

u =
1

|Γ|

∫
Γ

ϕ(x) dSx, ω =
1

W

∫
Γ

ϕ(x) · (x− q)⊥ dSx, (3.7.7)

where |Γ| is the length of Γ and W =
∫

Γ
|x− q|2 dSx. We remark that the random surface

velocity −v̆(x) can also be included on the left-hand-side of Eq. (3.7.6). This provides us

a mixed first- and second-kind formulation for solving the SSBVP (3.2.10). That is, we

7These are the two dimensional analogs of [1, Eqs. (4.9.22)-(4.9.23)].
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can generate the random surface velocity using the first-kind formulation described in the

main body of the chapter, and then, solve Eqs. (3.7.6) and (3.7.7) for {u, ω} to generate the

action of N and N 1
2 using a well-conditioned spectrally-accurate second-kind formulation.

In this work we choose to use the first-kind formulation for generating both the deterministic

motions and the Brownian displacements in the main body of the chapter, because the

discrete fluctuation-dissipation balance is exactly preserved in the first-kind formulation, but

not in the mixed formulation.

From a numerical standpoint, a desirable feature of the second-kind formulation in two

dimensions is that the double-layer kernel (stresslet) has no singularities for points on the

boundary, and discretizing the second-kind boundary integral equations using the regular

trapezoidal rule leads to spectral accuracy. However, this holds neither in three dimensions

nor for bodies that are near contact.

After discretizing Eqs. (3.7.6) and (3.7.7), we are required to evaluate the following

periodic sums involving the Stokeslet, stresslet and rotlet in the resulting linear system,

uGj (xt) =
1

4πη

∑
p∈Z2

Gjl(xt − q + pL)fl, (3.7.8)

uRj (xt) =
1

4πη

∑
p∈Z2

Rj(xt − q + pL)τ, (3.7.9)

uTj (xt) =
1

4πη

∑
p∈Z2

N∑
s=1

Tjlm(xt − xs + pL)Slm(xs), (3.7.10)

where xt,xs ∈ Γ denote the target and source points, respectively, and Slm(xs) = ϕl(xs)nm(xs)∆s.

We employ the Hasimoto function Eq. (3.3.13) to decompose the Stokeslet, rotlet and stresslet

into near-field and far-field contributions, and thereafter, these sums can be efficiently com-

puted using the Spectral Ewald method [77, 5]. The decomposition of the periodic Stokeslet

has been presented in the main body of the chapter (see Eqs. (3.3.14) and (3.3.15)). The
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periodic sum of the rotlet can be decomposed as

uRj (xt) =
1

4πη

∑
p∈Z2

R
(r)
j (xt − q + pL; ξ)τ +

1

ηV

∑
k 6=0

R
(w)
j (k; ξ) sin(k · (xt − q))τ,

where

R
(r)
j (x; ξ) =

x⊥j
r2

(1− ξ2r2)e−ξ
2r2 , (3.7.11a)

R
(w)
j (k; ξ) =

2πk⊥j
k2

(
1 +

k2

4ξ2

)
e−k

2/4ξ2 . (3.7.11b)

The complete decomposition of the periodic double-layer potential consists of four parts:

the mean stresslet term T
(0)
jlm, which defines a zero mean flow in periodic domains [5], the

near-field T
(r)
jlm and far-field T

(w)
jlm contributions, and the term that arises from the diagonal

elements of double-layer integral when xt = xs (see [117]). In summary, we have

uTj (xt) =
1

4πη

(
N∑
s=1

T
(0)
jlm(xs)Slm(xs)

+
∑
p∈Z2

N∑
n=1

T
(r)
jlm(xt − xs + pL; ξ)Slm(xs)

+
1

V

∑
k 6=0

T
(w)
jlm(k; ξ)

N∑
n=1

Slm(xs) sin(k · (xt − xs)),

+ 2π
N∑
s=1

κ(xs)
[
(t̂⊗ t̂)(xs)

]
jl
ϕl(xs)

)
, (3.7.12)

where κ and t̂ are the curvature and unit tangent vector on Γ, and [118]

T
(0)
jlm(x) =

4π

V
δlmxj, (3.7.13a)

T
(r)
jlm(x; ξ) =

[
−4xjxlxm

r4
(1 + ξ2r2) + 2ξ2(δlmxj + δmjxl)

]
e−ξ

2r2 , (3.7.13b)
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T
(w)
jlm(k; ξ) = −4π

k4

[(
1 +

k2

4ξ2

)[
k2(kjδlm + klδmj)− 2kjklkm

]
+ k2kmδjl

]
e−k

2/4ξ2 . (3.7.13c)

After we have efficient routines to compute the periodic sums described above, the discrete

linear system obtained from Eqs. (3.7.6) and (3.7.7) can be solved iteratively using GMRES

without preconditioning, since the second-kind formulation is well-conditioned.
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