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Motivation

Light-Activated Diffusio/Osmophoresis

Figure: From Jeremie Palacci, Paul Chaikin lab (NYU Physics) [1]
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Motivation

Light-Activated Colloidal Surfers

QuickTime
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Motivation

Bent Active Nanorods

Figure: From the Courant Applied Math Lab of Zhang and Shelley [2]
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Motivation

Thermal Fluctuation Flips

QuickTime
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Minimally-Resolved Blob Model

Fluid-Structure Coupling

We want to construct a bidirectional coupling between a fluctuating
fluid and a small spherical Brownian particle (blob).

Macroscopic coupling between flow and a rigid sphere:

No-slip boundary condition at the surface of the Brownian particle.
Force on the bead is the integral of the (fluctuating) stress tensor over
the surface.

The above two conditions are questionable at nanoscales, but even
worse, they are very hard to implement numerically in an efficient and
stable manner.

We need to include thermal fluctuations (Brownian motion) into the
fluid dynamics.
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Minimally-Resolved Blob Model

Blob Model of a Brownian Particle

Consider a Brownian particle of size a with position q(t) and
velocity u = q̇, and the velocity field for the fluid is v(r, t).

We do not care about the fine details of the flow around a particle,
which is nothing like a hard sphere with stick boundaries in reality
anyway.

Take an Immersed Boundary Method (IBM) approach and describe
the fluid-blob interaction using a localized smooth kernel δa(∆r) with
compact support of size a (integrates to unity).

Often presented as an interpolation function for point Lagrangian
particles but here a is a physical size of the particle (as in the Force
Coupling Method (FCM) of Maxey et al. [8]).

We will call our particles “blobs” since they are not really point
particles.
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Minimally-Resolved Blob Model

Fluctuating Hydrodynamics

The incompressible Navier-Stokes equation for the fluid velocity
v (r, t) with N immersed neutrally-buoyant blobs is

ρ∂tv + ∇π = η∇2v + ∇ ·
[
(kBTη)

1
2
(
W + WT

)]
(1)

+
N∑
i=1

{
Fiδa (qi − r) +

1

2
∇× [τ iδa (qi − r)]

}
, (2)

subject to ∇ · v = 0. Since the Reynolds number is very small
(∼ 10−6), we have linearized.

Fi is the force and τ i is the torque applied on particle i externally, or
via interactions with boundaries and other particles.
They are spread locally to the fluid as a smooth force/torque density.

The stochastic momentum flux (inducing the translational and
rotational Brownian motion) is modeled using a white-noise random
Gaussian tensor field W (r, t).
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Minimally-Resolved Blob Model

Particle Motion

The particles are advected by the locally-averaged
velocity/vorticity, as encoded in the no-slip condition [3]

ui =
dqi

dt
=

∫
δa (qi − r) v (r, t) dr

ωi ≡
dθi
dt

=
1

2

∫
δa (q− r)∇× v (r, t) dr.

In practice the particle Schmidt number is very large, and we take the
overdamped (inertia-less) limit ρ→ 0 (fluctuations have to be
handled with care [4]).

In the overdamped limit, without fluctuations, the particle motion
follows

v = L−1
N∑
i=1

{
Fiδa (qi − r) +

1

2
∇× [τ iδa (qi − r)]

}
,

where L−1 is the solution operator for the steady Stokes equation.
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Minimally-Resolved Blob Model

Reactive Blobs

Advection-diffusion-reaction equation for the concentration of the
species c (r, t) in the diffusion-limited regime,

∂tc + v ·∇c = χ∇2c in Ω \ S, (3)

c = 0 on ∂S, (4)

where S is the reactive sphere. Typically Peclet number is small and
one can ignore v ·∇c.

Reactive-blob model leads to saddle-point problem

∂tc + v ·∇c = χ∇2c −
N∑
i=1

riδa (qi − r) ,

s.t.

∫
δa (qi − r) c (r, t) dr = 0 for all i . (5)

Here ri is an unknown (Lagrange multiplier) reactive sink strength
that has to be solved for [5].
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Minimally-Resolved Blob Model

Versatility

The concentration and velocity equations can be coupled via
boundary conditions, e.g., osmotic/phoretic slip at boundaries

vn = 0, vτ = −µ ∂c
∂τ

,

where µ is a constant, n denotes the normal direction at the boundary
and τ the tangential direction.

Note that this sort of coupling cannot be handled by Green’s
function-based approaches such as Stokesian/Brownian dynamics.

We have low accuracy due to minimal resolution but gain
efficiency (thousands of particles) and flexibility:

More complicated particle shapes (rods, ellipses, etc.) can be
constructed from many blobs, with some caveats.
Additional physical processes, nonlinearities, more complicated
boundaries, etc., can be included using standard numerical techniques.
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Numerics

Numerical Scheme

Spatial discretization of fluid equations is based on second-order
staggered schemes for fluctuating hydrodynamics [6].

For blobs we use Immersed Boundary kernel functions of Charles
Peskin (these ensure excellent translational invariance despite minimal
resolution!).

Computational scheme implemented in the IBAMR library (Boyce
Griffith, NYU). Stokes solver uses a projection-based preconditioner
[7] and iterative reaction-diffusion solver uses an approximate Schur
complement preconditioner [5].

Temporal discretization is implicit and limited in stability only by
advective CFL.
Let J denote the discrete local averaging operator

∫
dr δa (qi − r)

and S its adjoint discrete spreading operator δa (qi − r).
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Numerics

Example Temporal Discretization

1 Solve concentration equation using backward Euler:

cn+1 − cn

∆t
= χ∇2cn+1 − Snλn+1 (6)

Jncn+1 = 0 (7)

and evaluate slip velocity vn+1
τ = −µ∂cn+1

∂τ at boundaries.
2 Solve steady Stokes fluid equation using vn+1

τ as the boundary
condition,

∇πn+1 = η∇2vn+1 + SnFn +
1

2
∇× Snτ n + thermal (8)

∇ · vn+1 = 0, (9)

3 Update particle positions and orientations,

qn+1 = qn + ∆t Jnvn+1.

θn+1 = θn +
∆t

2
Jn∇× vn+1.
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Numerics

Osmophoretic Colloidal Surfers

MPEG
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Outlook

Immersed Rigid Blobs

Unlike a rigid sphere, a blob particle would not perturb a pure shear
flow.

In the far field our blob particle looks like a force monopole
(stokeset), and does not exert a symmetric force dipole (stresslet)
on the fluid, only an anti-symmetric dipole (rotlet) via the torque.

One can, however, construct more complex rigid body shapes
(rods, ellipsoids) from blobs (work with Boyce Griffith and Neelesh
Patankar).

This is similar to what is done in the regularized Stokeslet methods
(Cortez et al.) but discretization of fluid equations is direct, not based
on Green’s functions.
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Outlook

Immersed Rigid Bodies

This approach can be extended to an immersed rigid body Ω:

ρDtv + ∇π = η∇2v +

∫
Ω

S (q)λ (q) dq + thermal∫
Ω
λ (q) dq = F (force balance)∫

Ω
[q× λ (q)] dq = τ (torque balance)∫

δa (q− r) v (r, t) dr = u + q× ω for all q ∈ Ω (no slip)

∇ · v = 0 everywhere,

where u is the linear and ω is the angular velocity of the body, and
λ (q ∈ Ω) is an Lagrange multiplier internal stress field.

This can be discretized using blobs but effectively preconditioning
the linear solvers is hard (saddle-point systems).

Fluctuation-dissipation balance needs to be studied carefully...
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Outlook

Conclusions

Fluctuating hydrodynamics is a very good coarse-grained model for
fluids, and can be coupled to immersed particles to model Brownian
suspensions.

The minimally-resolved blob approach provides a low-cost but
reasonably-accurate representation Brownian particles in flow.

One can construct reactive blobs, in either the diffusion-limited or
reaction-limited cases.

Active particles can be created from combinations of reactive and
non-reactive blobs.

No Green’s functions are used: fluid equations solved using
staggered finite-volume methods.

More complex particle shapes can be built out of a collection of
blobs.
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Outlook
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