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Isotropic DSMC (I-DSMC)

Stochastic Molecular Dynamics

In real fluids particles (atoms) interact continuously via interaction
forces: Molecular Dynamics (MD).

A notable exception are hard-sphere fluids.

At low densities, particles travel almost freely in-between brief but
intense collisions.

Momentum and energy transport in a collisional fluid have two
components:

Kinetic: advective motion made diffusive by the randomizing collisions
Collisional: momentum and energy exhange during the collisions

Stress tensor is an average over collisions,

σ = σk + σc =m 〈vi ⊗ vi 〉+ m
〈rij ⊗∆vij〉c

∆t
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Isotropic DSMC (I-DSMC)

Traditional DSMC

Traditional DSMC assumes a low-density gas, meaning that the
kinetic transport dominates: the collisional terms do not really matter!

In particular, the typical collisional distance 〈rij〉 does not matter as
long as 〈rij〉 � λ.

Traditional DSMC algorithm:

Propagate particles advectively, r
′

i = ri + vi∆t, and sort them into a
grid of collision cells.
For each cell c a certain number Ntc ∼ ΓtcNc(Nc − 1)∆t of random
trial collisions are executed.
The collision rate Γtc ∼ σ is chosen based on kinetic theory and a
prescribed collisional cross-section σ.

The trial collision is accepted with some probability p
(acc)
ij dependent on

vrel = |vij |, e.g., p
(acc)
ij = vrel/v

(max)
rel for hard-sphere gases.

Momentum and energy is exchanged conservatively, choosing ∆vij

randomly, independently of rij .
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Isotropic DSMC (I-DSMC)

DSMC for Dense Flows

As the density is increased, i.e., when 〈rij〉 & λ, the collisional
contributions to the transport begin to become important...

Grid artifacts in traditional DSMC:

It is not Galilean invariant: the grid of cells must be shifted randomly
before each collision step.
It is not microscopically isotropic and does not strictly conserve angular
momentum.

The collisional stress tensor in traditional DSMC is anisotropic and
the particle interactions are not frame invariant: this is not acceptable
for liquids or dense gases!
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Isotropic DSMC (I-DSMC)

Isotropic DSMC

Isotropic DSMC: All pairs of particles closer than distance D are
collision candidates, even if in neighboring cells!

In the limit of small time steps, the I-DSMC method simulates the
following stochastic particle system:

Particles move ballistically in-between collisions.
While two particles i and j are less than a diameter D apart, rij ≤ D,
there is a probability rate χD−1Kc(vij , rij) for them to collide and
change velocities without changing their positions.
The pair center-of-mass velocity does not change, while the relative
velocity is drawn from a probability density Pc(v

′

ij ; vij , rij),∥∥∥v
′

ij

∥∥∥ = ‖vij‖.
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Isotropic DSMC (I-DSMC)

I-DSMC Collision Kernels

The I-DSMC fluid is specified through: the pre- and post-collision
kernels Kc and Pc , the cross-section factor χ and the density
(hard-sphere volume fraction) φ = πND3/(6V ).

Normalization is such that for χ = 1 and φ� 1, the effective
collisional cross-section is the same as traditional DSMC:

1 Traditional DSMC collisions:

Kc = 3vrel/4, requiring costly rejection to implement.
The relative velocity is rotated uniformly independent of rij [1].

2 Maxwell collisions:

Kc = 3v rel/4 = 3
√

kBT0/πm, no rejection necessary!
This is unphysical if the temperature dependence matters, but
otherwise preferred.
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Isotropic DSMC (I-DSMC)

I-DSMC Algorithm

1 Visit the cells one by one in random order.

2 For each cell c perform N
(c)
tc = Γ

(c)
tc NcNp∆t trial collisions between

one of the Nc particles in that cell and one of the Np particles in the
3d neighboring cells, rejecting self-collisions. The local collisional

rate Γ
(c)
tc = χD−1K

(max)
c /2.

3 Perform an actual collision for the trial pair ij with probability

pc
ij = Kc(vij , rij)/K

(max)
c .

4 For the Maxwell kernel K
(max)
c = 3v rel/4 = const.

5 For the traditional pre-collision kernel K
(max)
c = 3v

(max)
rel /4.
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Isotropic DSMC (I-DSMC)

Practicalities

Guidelines for parameter selection:

Cell length Lc ' D.
Choose φ such that there are a couple of particles per cell.
Trial collision frequency χ should be adjusted to tune viscosity.
Choose dimensionless time step δt / 0.10− 0.25 s.t.

l∆t ≈ ∆t
√

kBT0/m ∼ Dδt.

Time steps should be such that there are no more than 0.25− 0.5
collisions per particle per time step.
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Isotropic DSMC (I-DSMC)

Comparison with Traditional DSMC

I-DSMC is not meant to replace traditional DSMC at low densities!
For one, it is several times less efficient.

The molecular properties enter in traditional DSMC only in the form
of collisional cross-sections σ ∼ D2

m.

For rarified gas flows, the collision diameter D is like the cell length
Lc , not Dm!

I-DSMC for a low-density gas of hard-sphere of diameter Dm:
Choose the collision diameter D ≈ λ/4� Dm, and set
χB ∼ (Dm/λ)2 � 1.
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SHSD

Non-Ideal Fluids

Recall stress tensor

σ = σk + σc =m 〈vi ⊗ vi 〉+ m
〈rij ⊗∆vij〉c

∆t

For randomized collision kernels, at equilibrium σc =0 and the fluid
has an ideal equation of state (EOS),

p = PV /NkBT = 1

The (I-)DSMC fluid is thus very compressible and has large density
fluctuations.

Idea: Mimic repulsion by biasing the momentum exchange
∆pij = m∆vij to be (statistically) aligned to rij .

A. Donev (LLNL/LBNL) SHSD Sept. 2009 10 / 23



SHSD

Hard-Sphere Collision Kernels

Maximal repulsion when ∆pij ‖ rij , i.e., the hard-sphere collision rule,

v′i =vi + vn r̂ij

v′j =vj − vn r̂ij ,

where vn = −vij · r̂ij is the normal (relative) speed.

Only accept collisions of approaching particles, vn > 0.

Thermodynamics requires that pc ∼ Tc for a fluid with no internal
energy.

Locally, pc ∼ 〈∆vij · rij〉c ∼ Γl

√
Tl , where Γl is the local collisional

frequency, and thus we require Γl ∼
√

Tl .

This requires a pre-collision kernel that is linear in the relative speed!
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SHSD

Collision Kernels contd.

Stochastic Hard-Sphere Dynamics (SHSD) collision kernels [2]:

Pc(v
′
ij ; vij , rij) =δ(vij + 2vn r̂ij).

Kc(vij , rij) =3vnΘ(vn)

SHSD is a specific version of I-DSMC and is implemented with the
I-DSMC algorithm.

Rejection of collision trial pairs slows things down significantly but is

necessary (we use K
(max)
c = 3v

(rel)
max ).

A. Donev, A. L. Garcia and B. J. Alder [3, 4]
”Stochastic Hard-Sphere Dynamics for Hydrodynamics of Non-Ideal
Fluids”, Phys. Rev. Lett. 101:075902 (2008) [arXiv:0803.0359]
”A Thermodynamically-Consistent Non-Ideal Stochastic Hard Sphere
Fluid”, submitted [arXiv:0908.0510].

A. Donev (LLNL/LBNL) SHSD Sept. 2009 12 / 23



SHSD

The SHSD Fluid

The SHSD fluid has non-trivial structure

But is the structure thermodynamically-consistent with the EOS,
p(φ) = PV /NkBT , i.e.,
Are the density fluctuations consistent with the
compressibility?!?
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SHSD

SHSD as a Penetrable Sphere Fluid

The SHSD fluid is not a classical Hamiltonian fluid, so classical
statistical mechanics is not directly applicable.

We find numerically that the SHSD system is thermodynamically
equivalent to a system of penetrable spheres interacting with a
linear core pairwise effective potential

U(r)/kT = 3χ(1− x)Θ(1− x)

This potential is similar to the Dissipative Particle Dynamics (DPS)
quadratic core potential.

This equivalence guarantees thermodynamic consistency for SHSD,
i.e.,

S(ω = 0, k = 0) =
kBT

m
c−2
T = (p + φdp/dφ)−1
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SHSD

Pair Correlation Function

0.25 0.5 0.75 1 1.25 1.5 1.75 2

x=r/D

0.25

0.5

0.75

1

g 2(x
)

Low density limit
HNC linear core
MC linear core
SHSD φ=0.1
SHSD φ=0.5
SHSD φ=1.0
SHSD φ=2.0

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

kD / 2π
0

0.25

0.5

0.75

1

1.25

1.5

S(
k)

Low density appr. (φ=0.1)
HNC linear core
SHSD φ=0.1
SHSD φ=0.5
SHSD φ=1.0
SHSD φ=2.0

Figure: g2(x) and S(k) for SHSD with χ = 1
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SHSD

Transport Coefficients

The hydrodynamics of SHSD is described by a stochastic revised
Enskog equation [5],

∂f (t, r, v)

∂t
+ v ·∇rf (t, r, v) =3χD2

∫ 1

0
dx

∫
R3

dw

∫
S2

+

de x2vn[
g2(r, r + xe; n)f (t, r, v′)f (t, r + xe,w′)

−g2(r, r − xe; n)f (t, r, v)f (t, r − xe,w)
]

where vn = −e · (v −w) ≥ 0, v′ = v + evn and w′ = w − evn.

A standard second-order Chapman-Enskog expansion [5] gives
theoretical estimates for transport coefficients in terms of the
moments of pair correlation function g2(x = r/D),

xk =
∫ 1

0 xkg2(x)dx .
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SHSD

Pressure
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SHSD

Viscosity
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Conclusions

SHSD as a Stochastic Fluid

The SHSD algorithm gives a fluctuating hydrodynamic medium with
tunable compressibility and viscosity that is significantly more
efficient than classical Molecular Dynamics!

We have verified that the spatio-temporal correlations of the
fluctuating hydrodynamic field U = (ρ0 + δρ, δv ,T0 + δT ) are
consistent with the (linearized) Landau-Lifshitz Navier Stokes
(LLNS) equations.

The speed of sound increases with φ and χ, and the density
fluctuations are correspondingly reduced.

For reasonable parameters the SHSD fluid is still relatively
compressible compared to a dense liquid, Schmidt number
Sc = η(ρζ)−1 ∼ 10 instead of Sc ∼ 1000 for water.
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Conclusions

Dynamic Structure Factor
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Figure: Shifting of the two symmetric Brillouin peaks at ω ≈ csk toward higher
frequencies as compressibility is reduced.
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Conclusions

Conclusions

Collisional contribution to the stress tensor can be made Gallilean
invariant and isotropic by making DSMC grid-free: Isotropic DSMC
(I-DSMC).

Eliminating grid artifacts is expensive but becomes important for
dense and non-ideal fluids.

A non-ideal equation of state can be introduced in I-DSMC by using
the hard-sphere pre- and post-collision kernels: Stochastic
Hard-Sphere Dynamics (SHSD).

We have coupled I-DSMC to a continuum fluctuating hydrodynamics
solver in a hybrid method [6]
”A hybrid particle-continuum method for hydrodynamics of complex
fluids”, by A. Donev and A. L. Garcia and J. B. Bell and B. J. Alder,
under preparation, 2009.
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Conclusions

Future Work

Develop kinetic theory for I-DSMC for the traditional and Maxwell
collision kernels.

Deeper theoretical understanding of the connection between
stochastic and deterministic fluids.

I-DSMC and SHSD can and should be parallelized.

Our hybrid method works only for ideal DSMC fluids: Can we couple
SHSD to a continuum solver?

Ultimately we require an Adaptive Mesh and Algorithm
Refinement (AMAR) framework that couples deterministic MD for
the polymer chains (micro), a stochastic solvent (micro-meso), with
compressible fluctuating Navier-Stokes (meso), and incompressible
CFD (macro).
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