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Abstract

Slender fibers are ubiquitous in biology, physics, and engineering, with prominent exam-

ples including bacterial flagella and cytoskeletal fibers. In this setting, slender body theories

(SBTs), which give the resistance on the fiber asymptotically in its slenderness ε, are useful

tools for both analysis and computations. However, a difficulty arises when accounting for twist

and cross-sectional rotation: because the angular velocity of a filament can vary depending on

the order of magnitude of the applied torque, asymptotic theories must give accurate results

for rotational dynamics over a range of angular velocities. In this paper, we first survey the

challenges in applying existing SBTs, which are based on either singularity or full boundary in-

tegral representations, to rotating filaments, showing in particular that they fail to consistently

treat rotation-translation coupling in curved filaments. We then provide an alternative approach

which uses the Rotne-Prager-Yamakawa tensor as a regularized singularity to represent the fiber

centerline. Unlike existing SBTs, this approach gives a grand mobility with symmetric rotation-

translation and translation-rotation coupling, making it applicable to a broad range of angular

velocities. To restore fidelity to the three-dimensional filament geometry, we use our regularized

singularity model to inform a simple empirical equation which relates the mean force and torque

along the filament centerline to the translational and rotational velocity of the cross section.

The single unknown coefficient in the model is estimated numerically from three-dimensional

boundary integral calculations on a rotating, curved filament.

1 Introduction

Whether an organism has one or millions of cells, slender filaments play a vital role in its motion and

maintenance. For instance, these types of filaments make up the flagellar appendages that bacteria

use to propel themselves in run and tumble motions [4, 23]. In animal cells, slender filaments are

a key component in the cell cytoskeleton, which provides a scaffolding for the cell [1], and adapts

to promote cellular division, migration, and resistance to deformation [11].
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Given the vital role of slender filaments in biology, it is not surprising that their interaction with

the fluid medium in which they are immersed has been a subject of study in physics and applied

mathematics. Because most of the applications of interest involve small lengthscales, the relevant

fluid equations are the Stokes equations, which are linear and therefore possible to solve analytically

through the use of the Stokes Green’s function. However, because the body geometry is slender,

it is expensive and often intractable to solve the Stokes equations on the surface of the slender

filament. This intractability led Batchelor to develop the first so-called “slender body theory”

(SBT) [3], in which the body is approximated via a one-dimensional line of Stokeslet singularities.

Subsequent work by Keller and Rubinow [19] and Johnson [15] placed Batchelor’s work on more

rigorous asymptotic footing; in particular, Johnson [15, 16] showed that adding a doublet to the

line integral produces a velocity that is guaranteed to be constant to O(ε) on the fiber cross section,

where ε is the filament slenderness.

Recent work has focused on placing these theories in the context of three-dimensional well-posed

partial differential equations (PDEs) [33, 31, 32, 22]. In particular, it has been shown that SBT

can be derived from a three-dimensional boundary integral equation [22, 13], and that its solution

is an O(ε) approximation to a Stokes PDE with mixed Dirichlet-Neumann boundary data and a

boundary condition that the fiber maintain the integrity of its cross section [33, 31, 32]. A second

class of recent work has developed SBTs for different geometries, including ribbons [21], cables [20],

and bodies with non-circular cross section [5].

Despite the breadth of literature on SBT and the novel theories for complex geometries, there

remains an open problem which is simple to formulate, but difficult to solve, having to do with

the rotation of a filament. Consider a filament with one clamped end and one free end, where

a motor spins the clamped end with frequency ω. At some critical frequency ωc, the applied

torque overcomes the bending moment, the steady twirling state becomes unstable, and large-

scale filament deformations are introduced. This instability, which has been studied extensively in

[49, 25, 45, 24, 30] has applications in the motion of bacterial flagella [7, 50] and supercoiling during

DNA transcription [26]. It has been shown that the critical frquency ωc scales like 1/ε2, and thus

that the torque required to induce it is approximately independent of the fiber aspect ratio [38,

Eq. (62)]. Because of this, fibers being driven at the critical frequency have angular velocities which

are sufficiently large as to also affect the translational dynamics. But as of yet, we are not aware

of any slender body theory that can consistently account for the full hydrodynamics of a slender,

translating, and rotating filament, and in particular for the coupling between the two. In fact, we
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recently showed that the failure to account for rotation-translation coupling causes the SBT-based

analysis of [49] to overestimate ωc by as much as 20% [30, Sec. 5.3]. To understand the reason for

this, in Section 2 we present a survey of an old and new approach to SBT, and an explanation of

the challenges involved when we try to extend these approaches to account for rotation.

In Section 3 of this paper, we offer a line integral of regularized singularities as a potential

alternative to traditional SBT. Mathematically, the approach of the original slender body pioneers

[3, 19, 15] was to distribute singularities along the centerline, then evaluate the flow from these

singularities on a fiber cross section. The flow is nonsingular since it is evaluated a fiber radius

away from the location of the singularities. In regularized singularities, we instead distribute the

force and torque over a “cloud” or “blob” region of characteristic size â ∼ a, which is defined by

some regularized delta function δâ. In this case, the velocity field is nonsingular because the force

and torque are distributed over a region of finite size approximately equal to the fiber radius. We

can then convolve the velocity field (or half the vorticity field) with the regularized delta function

again to obtain the velocity (or angular velocity) of the fiber centerline. In this way, we derive

fundamental regularized singularities for all components of the mobility operator, then perform

asymptotics on line integrals of the regularized singularities.

Representing filaments using regularized singularities is not a novel idea, as it was first employed

for numerical purposes in the immersed boundary (IB) method of the early 1970s to model the flow

patters inside the heart [36]. Later variations, including the force coupling method [27], method

of regularized Stokeslets [8, 9], and Rotne-Prager-Yamakawa (RPY) tensor [40, 46], focused on

choosing the regularized delta function such that the Stokes equations are solvable analytically.

The accuracy of using regularized singularities to approximate slender translating filaments has

been studied numerically [6] and analytically [10, 29, 34, 51]. The conclusion of these studies is

that regularization methods can effectively match slender body theory with a judicious choice of

regularization radius â. There has yet to be an analysis, however, of how regularized singularities

perform in the context of rotation. For instance, do they reproduce the relationship between torque

and rotational velocity for a straight cylinder? And what about the feedback of rotational velocity

on translational motion for curved filaments?

These are the main questions we try to answer in this paper. To do so, we first look at how

far we can get with traditional SBT in Section 2. We show that the singularity methods of Keller

and Rubinow and Johnson yield well-defined mobilities for translation from force (trans-trans)

and rotation from torque (rot-rot) terms, but that both leave an unknown O(1) constant in the
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rotation-translation (rot-trans) coupling term which is relevant when the fiber is driven by a large

torque. Then, we perform asymptotic expansions on line integrals of regularized RPY singularities

to derive a consistent SBT for filaments rotating and translating with speeds of arbitrary order.

We show that the regularized singularity radius â can be chosen to match either the trans-trans

or rot-rot mobility, but not both. We also show that, unlike SBTs that are more faithful to the

filament geometry, the regularized RPY singularity approach gives symmetric rot-trans coupling

terms, and can easily be evaluated at the fiber endpoints without having to modify the radius

function.

The main drawback of our regularized singularity approach is that we lose fidelity to the true

tubular geometry of the filament. However, since we expect the regularized singularity approach

to capture the essential physics of the interaction between the filament and fluid, we can utilize

it as a starting point to model the three-dimensional dynamics. To this end, in Section 4 we use

our results from Section 3 to postulate an asymptotic relationship between the force and torque on

a filament’s cross section and its translational and rotational velocity. This equation has a single

unknown constant, which we estimate through three-dimensional boundary integral simulations,

thereby developing an empirical SBT for tubular rotating filaments.

2 Three-dimensional SBTs for twist

In this section, we discuss how previous SBTs for translation might be extended to also account for

rotation. This section is not meant to be a comprehensive list of previous SBTs (see [42] for a such

a review), but rather a focus on two different techniques and the challenges involved in applying

them to a (rapidly) rotating filament. Our first technique is that used by Keller and Rubinow [19]

and Johnson [15, 16], which is to represent the flow field by an integral of singularities positioned

on the filament centerline. The approach of Keller and Rubinow is technically distinct from that of

Johnson since they only use the singularity representation in the outer expansion, but the end result

for is the same, and so we discuss both in Section 2.1. We then discuss the more recent approach

of Koens and Lauga [22], which evaluates the three-dimensional boundary integral representation

of the surface velocity asymptotically in ε. The asymptotics of this approach are more involved,

since it maps traction on a surface to velocity on a surface, rather than singularities on a line to

velocity on the surface.

To establish some notation, we let X(s) be the fiber centerline, where s ∈ [0, L] is an arclength
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parameterization of the curve, and thus τ (s) = ∂sX(s) is the unit-length tangent vector. The fiber

surface X̂ is then defined as

X̂(s, θ) = X(s) + aρ(s) (en(s) cos θ + eb(s) sin θ) := X(s) + aρ(s)r̂(s, θ), (1)

where aρ(s), 0 ≤ ρ(s) ≤ 1, is the radius of the (circular) cross section at s, en(s) = Xss(s)/κ(s)

is the fiber normal, κ(s) is the centerline curvature at s, and eb = τ × en is the binormal. The

maximum fiber radius is a, which gives an aspect ratio ε := a/L. Unless otherwise specified, we

will assume that we are working in a region of the fiber where ρ(s) ≡ 1; thus aρ = a.

We will assume that the fiber centerline is translating with velocity U(s) while its cross section

rigidly rotates with angular velocity Ψ‖(s) around the tangent vector τ (s), so that the velocity on

the surface of the fiber is given by

Û(s, θ) = U(s) + aΨ‖(s) (τ (s)× r̂(s, θ)) (2)

The goal of our analysis is to find an equation relating this motion to the total force density f(s) and

parallel torque density n‖(s) on the fiber cross section. We assume here that the no-slip condition

applies to the fluid velocity u(x), so that

u
(
X̂(s, θ)

)
= Û(s, θ). (3)

2.1 Singularity representations

We first try to apply an older SBT approach to the spinning filament problem: the singularity

approach of Johnson [15], and later Götz [14]. The approach of Johnson is to look for a series of

singularities along the fiber centerline to represent the flow field globally (everywhere outside the

fiber). The singularities are chosen so that the boundary condition (3) is satisfied with an error

O(ε).

Using superposition, we can break the boundary velocity (2) into a velocity with U = 0 and

another with Ψ‖ = 0. For Ψ‖ = 0, Johnson shows that the boundary condition (3) can be satisfied

to O(ε) by setting the global flow outside of the fiber to be an integral of Stokeslets and doublets,

u(u)(x) =
1

8πµ

∫ L

0

(
S (x,X(s)) +

(aρ(s))2

2
D (x,X(s))

)
f(s) ds (4)

where S (x,X(s)) =

(
I

r
+
rrT

r3

)
, D (x,X(s)) =

(
I

r3
− 3

rrT

r5

)
,
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and r = x −X(s) with r = ‖r‖. The doublet strength is necessary to cancel the O(1) angular-

dependent flow induced by the Stokeslet on a filament cross section. Since the doublet has strength

O(ε2), it makes a negligible contribution to the outer expansion, but corrects the Stokeslet flow

in the inner expansion. The resulting asymptotic evaluation of u(u) on the filament cross section

X̂(s, θ) is independent of θ to O(ε), and is given by

8πµu(u)
(
X̂(s, θ)

)
= U

(LD)
f (s) +U

(FP)
f +O(ε), (5)

U
(LD)
f (s) = ln

(
4s(L− s)

a2

)
(I + τ (s)τ (s))f(s) + (I − 3τ (s)τ (s))f(s) (6)

U
(FP)
f (s) =

∫ L

0

(
S (X(s),X(t))f(t)−

(
I + τ (s)τ (s)

|t− s|

)
f(s)

)
(7)

where the doublet contributes the (I − 3ττ ) term [15, Eqs. (10–12)], and the term U
(FP)
f is a finite

part integral which is only well-defined as a difference of two terms (the outer and inner expansions).

The expression (5) has an error on the cross section of order ε, which means there will be a nonzero

O(1) rotational velocity of the cross section. To zero out the rotational velocity, Johnson shows that

it is necessary to introduce a rotlet, a source, two stresslets, and two quadrupoles, with strengths

given as a function of the O(ε) velocity generated by the surface flow (5). While these singularities

zero out the O(ε) term, they do not impart any additional translational velocity on the cross section,

meaning that (5) gives the translational velocity on the cross section to order ε2 log ε.

Let us now consider how the fluid flow outside the fiber relates to its angular velocity. Johnson

first sets

n‖ = 4πµa2Ψ‖, (8)

which is the result for an infinite, straight cylinder [38, Eq. (62)]. The singularity representation

Johnson uses to match the angular velocity everywhere is then given by a line integral of rotlets,

8πµu(Ψ) (x) =

∫ L

0
R (x,X(s))n‖(s) ds, R (x,X(s)) =

τ (s)× r
r3

(9)

Asymptotically, this velocity is equal to

8πµu(Ψ)
(
X̂ (s, θ)

)
≈ 2n‖

a
(τ × r̂) +

n‖

2

(
ln

(
4s(L− s)

a2

)
− 2

)
(τ × ∂sτ ) +U (FP)

n (10)

+n‖κ cos θ (τ × r̂) +O (ε log ε) ,

where U (FP)
n (s) =

∫ L

0

(
R (X(s),X(t))n‖(t)− 1

2

(
τ (s)× ∂sτ (s)

|t− s|

)
n‖(s)

)
(11)
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on the fiber surface. Substituting (8) into (10), we see that the first term is exactly the angular

velocity of (2), while the second and third terms on the first line of (10) give an additional constant

velocity on the cross section (the rot-trans coupling term). However, we still have an angular-

dependent term on the second line of (10): since τ × r̂ = eb cos θ− en sin θ, the term in the second

line has the angle dependence

n‖κ cos θ (τ × r̂) =
n‖κ

2
(eb + eb cos 2θ − en sin 2θ) . (12)

In Johnson’s analysis, the angular velocity Ψ‖ and translational velocity U are of the same

order in ε, and so the contribution of all subleading terms in (10) to translational velocity on the

cross section is still ε2 relative to the contribution of forcing. However, if force and torque are of

the same order in ε (as when a fiber is driven by a torque n‖ independent of ε), the second line

will make an O(1) contribution to the cross-sectional velocity, violating the boundary condition

(3). Thus, there is a O(1) angle dependence coming from the rotlet term which is unresolved. This

dependence is the reason why the final integral equation of Keller and Rubinow [19, Eq. (28)] for

twisting filaments contains terms which depend on the angle θ at which the inner expansion (of

a rotating, translating cylinder) is matched with the outer expansion (of Stokeslets and rotlets),

meaning there is no general solution for the Stokeslet and rotlet strength which is independent of

the matching angle.

In addition, there is also a lack of symmetry in the final result of Johnson, since torque makes an

O(log ε) contribution to U in (10), but force does not contribute to Ψ‖ in (8). In our prototypical

example of an unstable twirling fiber, this is not an issue, since force makes a negligible contribution

to rotational velocity anyway.1 In the case when Ψ‖ does not scale with ε, however, the torque n‖ is

order ε2 and therefore makes a negligible contribution to U , but the force might make a nontrivial

contribution to Ψ‖. Thus there are two main issues when applying singularity representations

to twisting filaments: first, the representation of the rotation in terms of rotlets is insufficient to

satisfy the boundary condition (3) to O(ε), and, second, there is a lack of symmetry in the rot-trans

coupling terms.

1Specifically, if the motor is driven by a constant torque n‖, the angular velocity Ψ‖ ∼ n‖/ε2. Symmetry tells us

that the contribution of force to Ψ‖ is O(log ε), which means that the rotational velocity from force is Ψ
‖
f ∼ f log ε,

which is much smaller than the rotational velocity from torque Ψ
‖
n ∼ n/ε2, if f and n scale similarly with ε.
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2.2 Boundary integral representations

Recently, effort has been made to place the asymptotic theories of Keller and Rubinow and Johnson

on a more rigorous three-dimensional footing. Foremost among these are Mori et al. [32, 33, 31],

who show that slender body theory is an O(ε) approximation of a three-dimensional PDE with

non-standard boundary conditions, and Koens and Lauga [22], who show that the translational

SBT of Johnson and Keller and Rubinow can be obtained from asymptotic expansion of the single

layer2 boundary integral equation [39, Sec. 4.1]

8πµ Û (s, θ) =

∫ 2π

0

∫ L

0
S
(
X̂(s, θ), X̂(s′, θ′)

)
f̂
(
s′, θ′

)
ds′dθ′. (13)

Here we assume the fiber is a thin shell filled with fluid, so that f̂(s, θ), which is the jump in surface

traction times the surface area element [39, p. 105], is also equal to the force density on the fiber

surface. Koens and Lauga show that the constant cross-sectional U(s) in (2) is related to the total

force on a cross section,

f(s) =

∫ 2π

0
f̂ (s, θ) dθ (14)

by the classical SBT (5), and that, for a straight cylinder, the torque-angular velocity relationship

(8) is recovered [22, Eq. (4.11)] for the total parallel torque on a cross section,

n‖(s) = τ (s) ·
∫ 2π

0
aρ(s)

(
r̂(s, θ)× f̂(s, θ)

)
dθ. (15)

Here we briefly discuss how the approach of Koens and Lauga might be extended to account for

rotation in curved filaments. The main issue is that, if the boundary integral equation (13) is only

expanded to leading order (i.e., with an error of O(ε)), it is impossible to make observations about

the rotational velocity, since the velocity on the cross section induced by an angular velocity Ψ‖ is

∼ εΨ‖. Thus more terms are necessary in the asymptotics. Unfortunately, because the expansions

must be conducted around both θ and s in (13), even expanding a single layer formulation to the

next order is complex.

To get a flavor for the challenges involved, we consider an asymptotic expansion of the isotropic

part of the single-layer potential (c.f. [22, Eq. (5.1)]

U i1(s, θ) :=

∫ 2π

0

∫ L

0

f(s′, θ′)

R
(
X̂(s, θ), X̂(s′, θ′)

) dθ′ ds′, (16)

2Koens and Lauga begin with the full boundary integral representation, but the single layer representation is

sufficient as long as there is no change in the fiber volume. However, it is important to point out that f̂ in (13) is

not in general the force density on the fiber surface. Notable exceptions are a filament undergoing rigid body motion

or a “filament” whose interior is a fluid of viscosity equal to that of the fiber exterior.

8



in an inner region where s − s′ = O(a). The details of the expansion up to integration over θ are

given in Appendix A. In order to integrate over θ′, we need to assume a Fourier-series representation

of f . For simplicity, we will look only at the first two terms,

f̂(s, θ) =
1

2π
f(s) +

1

2π

(
f c,1(s) cos θ + f s,1(s) sin θ

)
, (17)

which we substitute into (A.5). After integrating over θ′, the final inner expansion for the surface

velocity is3

U i1(s, θ) = ln

(
4s(L− s)

a2

)
f(s) + (L− 2s)∂sf(s) + f c,1(s) cos θ (18)

−aκ
2

(
f(s) cos θ +

(
1

4
cos 2θ +

1

2

(
ln

(
4s(L− s)

a2

)
− 2

))
f c,1(s)− 1

2
f s,1(s) cos θ sin θ

)
+O(ε2).

We can make three important observations from (18): first, the term f(s)κ cos θ demonstrates rot-

trans coupling (rotational motion from constant forcing) which results from including additional

terms in the SBT expansion, or more specifically from accounting for the curvature of the fiber in

the inner expansion. Likewise, the torque (15) generated from the traction scales as af c/s,1, and

thus (18) tells us that torque makes an O(log ε) contribution to U(s), as we expect from the result

(10) of singularity methods.

While the result of Koens and Lauga is vital to understanding translational SBT, there are

clearly limitations to extending their approach to rotation. Even for the simplest possible term in

the boundary integral formulation (isotropic part of the single layer), there are many terms that

have to be tracked if we expand to O(ε), i.e., to an error of O
(
ε2
)
. More importantly, it is not even

clear if we can solve (18), since the Fourier modes no longer decouple as they do for translation.

Summing up this section, we have seen that a slender body theory which properly accounts for

twist dynamics and is faithful to the three-dimensional fiber geometry remains elusive. In order

to make some progress, we make an approximation of the fiber geometry and define the fiber as a

series of infinitely many regularized singularities. Then, we use our regularized singularity SBT to

inform an empirical SBT for the full three-dimensional geometry.

3 Slender body theory from regularized singularities

Our survey in Section 2 reveals the challenging nature of developing a slender body theory for twist.

Because of the separation of scales between the angular and translational velocity, more terms are

3We use the variable θ here for notational convenience; more precisely, θ should be measured relative to the curve

torsion angle θi(s), which is defined in Appendix A. That is, θ in (17) and (18) stands for θ − θi(s).
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required in the asymptotic analysis, which makes these SBTs tedious to derive and cumbersome to

work with in practice.

An alternative approach, which we consider in this section, is to relax the fidelity to a true

cylindrical geometry and instead represent the cylinder using regularized singularities distributed

along the centerline. The idea of the regularized singularity approach is to replace the delta func-

tion in the force and torque with a regularized delta function δâ, which is smoothed over some

“regularization radius” â. The pointwise fluid velocity due to the regularized singularities is then

obtained by solving the Stokes equations [30, Sec. 2.1]

∇π(x) = µ∇2u(x) +

∫ L

0

((
f(s) +

∇
2
× n‖(s)τ (s)

)
δâ (x−X(s))

)
ds, (19)

and ∇ · u = 0. The translational and parallel rotational velocity of the fiber centerline are then

given by convolving the pointwise velocity u(x) and half vorticity once more with the regularized

delta function,

U (s) =

∫
u(x) δâ (X(s)− x) dx (20)

Ψ‖ (s) = τ (s) ·
∫
δâ (X(s)− x)

∇
2
× u (x) dx. (21)

This yields a mobility that is guaranteed to be symmetric positive definite [17, Footnote 3]. Here

we only consider the parallel component of rotational velocity, since, for unshearable filaments, the

other components can be derived from the translational velocity U(s) [30, Sec. 2].

Using superposition, the translational and rotational velocity of the fiber centerline can be

defined as integrals of the fundamental regularized singularities

U(s) =

∫ L

0

(
Mtt

(
X(s),X(s′)

)
f(s′) + Mtr

(
X(s),X(s′)

)
n‖(s′)τ (s′)

)
ds′ (22)

Ψ‖(s) = τ (s) ·
∫ L

0

(
Mrt

(
X(s),X(s′)

)
f(s′) + Mrr

(
X(s),X(s′)

)
n‖(s′)τ (s′)

)
ds′

where the fundamental regularized singularities Mtt,Mtr,Mrt, and Mrr are obtained by convolving

the Stokeslet with δâ, with a half curl taken each time rotation comes in,

Mtt (x,y) =

∫
δâ (x− z)

∫
S (z,w) δâ (w − y) dw dz, (23)

Mtr (x,y) =

∫
δâ (x− z)

∫
S (z,w)

∇w

2
× δâ (w − y) dw dz,

Mrt (x,y) =

∫
δâ (x− z)

∇z

2
×
∫

S (z,w) δâ (w − y) dw dz = MT
tr (y,x) ,

Mrr (x,y) =

∫
δâ (x− z)

∇z

2
×
∫

S (z,w)
∇w

2
× δâ (w − y) dw dz.
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Using this approach, the four components of the mobility operator relating force and torque

to angular and rotational velocity can be written separately, giving four different integrals for the

four different pieces of the velocity in (22). Thus, we can simply do asymptotics on each of these

four integrals to get an approximation to each term to some order in ε. This is in contrast to the

SBTs of Section 2, where the translational velocity on the cross section was some combination of

contributions from force and torque, and we were left with trying to determine the order of each

term from the desired order of U and Ψ‖ on the cross section.

Once we define the velocity in (22), it remains to specify the regularized singularity kernels

and perform the integration. Our choice of kernel is the Rotne-Prager-Yamakawa (RPY) tensor

[40, 46], for which δâ(r) = δ(r − â)/(4πâ2), i.e., the regularized delta function is a surface delta

function on a sphere of radius â. This choice is more faithful to the original cylindrical geometry

than delta functions with infinite support [8, 9, 28] or those whose support is tied to a numerical

fluid grid [37]. In particular, since each regularized singularity is a sphere, it is not hard to imagine

this resulting in a cylinder of constant radius â along a length L, with hemispherical caps at each

end. Still, it is an approximation, since the regularized delta function is the same in the axial and

radial directions, and also because the RPY tensor does not include stresslet terms required to keep

the spheres rigid in flow [12], even though stresslets are of the same multipole order as torques,

which are included.

In a companion paper [30], we develop efficient quadrature schemes to evaluate the integrals

(22) to numerical, rather than asymptotic, precision. The RPY kernels change their form when

the distance between the spheres is less than 2â, i.e., when the spheres overlap, thus regularizing

the singularity that occurs in the interactions between point forces. Still, the kernels are nearly

singular, and in the limit â/L := ε̂ � 1 it is more efficient to evaluate them asymptotically, since

some of the singularities can safely be assumed to only contribute to the “inner” expansion.

In this section, we therefore perform asymptotic expansions on the integrals (22) to obtain

an SBT for a twisting filament. Our strategy is standard matched asymptotics and similar to

the approaches of Johnson [15] and Gotz [14] for SBT. Because we use regularized singularities,

however, all of the integrals take place on the fiber centerline, and so the asymptotics are in one

dimension, rather than on the fiber cross section (two dimensions). It therefore becomes much

simpler to obtain expressions for the velocity at the endpoints (see Appendix B), where we only

have to redefine the domain of integration in the inner expansion.

For each integral in (22), we first compute an outer expansion by considering the region where

11



|s− s′| is O(1). Then in the inner expansion, we consider the part of the integrals where |s− s′| is

O(â). In this case, we follow [14] and introduce the rescaled variable

ξ =
s′ − s
â

, (24)

so that ξ is O(1) in the inner expansion, and the domain of ξ is [−s/â, (L − s)/â]. With this

definition, it is straightforward to integrate over ξ and obtain an inner expansion, which is done in

two pieces because the RPY tensor changes at s = 2â (the case of overlapping spheres). Adding the

inner and outer solutions together and subtracting the common part then gives the final matched

asymptotic solution. Unless otherwise specified, all expansions will be carried out to O(ε̂), i.e., in

this section ≈ denotes equality up to O(ε̂).

3.1 Translation from force

We begin by expanding the translational velocity from force, which we define as

U f =

∫ L

0
Mtt

(
X(s),X(s′)

)
f(s′) ds′. (25)

The following derivation is a repeat of that given in [29, Appendix A], but it is included here

for completeness, and because the set of steps for the other 3 blocks of the mobility operator is

identical. When we substitute the definition of Mtt for RPY singularities from [46, Eq. (3.12)] into

(25), we have the integral

8πµU f (s) =

∫
R>2â

(
S
(
X(s),X(s′)

)
+

2â2

3
D
(
X(s),X(s′)

))
f(s′) ds′ (26)

+

∫
R≤2â

((
4

3â
− 3R (s′)

8â2

)
I +

1

8â2R (s′)
(RR)

(
s′
))
f
(
s′
)
ds′,

where R (s′) = X(s)−X (s′), and R = ‖R‖. The separation of the integrals captures the change

in the RPY tensor when R ≤ 2â. Because s is an arclength parameterization, we will replace the

bound R > 2â with |s− s′| > 2â going forward. This incurs a relative error on the order ε̂, which

is the same order to which we carry the asymptotic expansions.

In the outer expansion, we consider the part of the integral (26) where |s− s′| is O(1). In this

case, the doublet term in (26) is insignificant and we obtain the outer velocity by integrating the

Stokeslet over the fiber centerline,

8πµU
(outer)
f (s) =

∫
|s−s′|>2â

S
(
X(s),X(s′)

)
f
(
s′
)
ds′. (27)

12



The part of the kernel (26) for R ≤ 2â makes no contribution to the outer expansion since |s− s′|

is O(â) there.

The inner expansion of (26) is derived in a straightforward way by substituting the Taylor

expansions (B.1) into the RPY velocity (26) and integrating over ξ. The details are given in

Appendix B, with the final result that

8πµU
(inner)
f (s) = (I + τ (s)τ (s))f(s) ln

(
(L− s)s

4â2

)
(28)

+

((
4− â2

3s2
− â2

3(L− s)2

)
I +

(
â2

s2
+

â2

(L− s)2

)
τ (s)τ (s)

)
f(s),

in the fiber interior. The complete formulas including endpoint modifications are given in (B.7);

the O
(
â2
)

terms are included in (28) because they are necessary to give C2 continuity with the

endpoint formulas.

The common part is the outer velocity written in terms of the inner variables,

8πµU
(common)
f (s) =

∫
|s−s′|>2â

(
I + τ (s)τ (s)

|s− s′|

)
f(s) ds′. (29)

The total velocity is then the sum of the inner and outer expansions, with the common part

subtracted,

U f(s) = U
(inner)
f (s) +U

(outer)
f (s)−U (common)

f (s). (30)

This can be written as

U f(s) = U
(inner)
f (s) +

1

8πµ

∫
|s−s′|>2â

(
S
(
X(s),X(s′)

)
f
(
s′
)
−
(
I + τ (s)τ (s)

|s− s′|

)
f(s)

)
ds′, (31)

where U
(inner)
f is defined in (B.7). The velocity (31) has a form similar to that of SBT, but with

different bounds on the integral. Unlike SBT, the integral (31) is not a finite part integral, but a

nearly singular integral that makes sense for each term separately. Numerical evidence suggests

that, unlike traditional SBT, our asymptotic formula (31) keeps the eigenvalues of the mobility

above zero [30, Sec 4.4.1].

To compare with SBT, however, it is advantageous to observe that the integrand in (31) is

O(ε̂) when R ≤ 2â, and so we can add the excluded part back in without changing the asymptotic

accuracy. This gives a velocity of the exact same form as SBT,

8πµU f(s) = (I + τ (s)τ (s))f(s) ln

(
(L− s)s

4â2

)
+ 4f(s) (32)

+

∫ L

0

(
S
(
X(s),X(s′)

)
f
(
s′
)
−
(
I + τ (s)τ (s)

|s− s′|

)
f(s)

)
ds′,
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in the fiber interior, where we have dropped O(â2) terms from (28). The comparison of this formula

to translational SBT will be given in Section 3.5.

3.2 Translation from torque

To complete our formulation for translational velocity, we next consider an asymptotic expansion

of the velocity Un(s) due to a torque density n‖(s) on the fiber centerline,

Un(s) =

∫ L

0
Mtr

(
X(s),X(s′)

)
n‖(s′)τ (s′) ds′. (33)

When we substitute the definition of Mtr for RPY singularities from [46, Eq. (3.16)] into (33), we

have the integral

8πµUn(s) =

∫
R>2â

τ (s′)×R(s′)

R(s′)3
n‖(s′) ds′ (34)

+
1

2â2

∫
R≤2â

(
1

â
− 3R(s′)

8â2

)(
τ (s′)×R(s′)

)
n‖(s′)ds′,

where R(s′) = X(s)−X(s′). The first term in (34) is the Rotlet, while the second term is the RPY

tensor when R ≤ 2â. As before, we will use R ≈ |s− s′| to modify the bounds on the integrals.

In the outer expansion, we consider the part of the integral (34) where |s′ − s| is O(1). In this

case the correction term is insignificant and we get the outer velocity

8πµU (outer)
n (s) =

∫
|s−s′|>2â

τ (s′)×R(s′)

R(s′)3
n‖(s′) ds′. (35)

In the inner expansion, we use the inner asymptotics (B.1) to write the inner expansion as

8πµU (inner)
n (s) =

1

2
(τ (s)× ∂sτ (s))

(
ln

(
s(L− s)

4â2

)
+

7

6

)
(36)

in the fiber interior, with the corresponding endpoint formula given in (B.11). The details of this

inner expansion can be found in Appendix B.

The common part for trans-rot coupling is the inner expansion written in terms of the outer

variables,

8πµU (common)
n (s) =

∫
|s−s′|>2â

(
τ (s)× ∂sτ (s)

2|s− s′|

)
n‖(s) ds′. (37)

To O(ε̂), the velocity due to torque n(s) = n(s)τ (s) on the fiber centerline is given by

Un(s) = U (inner)
n (s) +U (outer)

n (s)−U (common)
n (s) (38)

Un(s) = U (inner)
n (s) +

1

8πµ

∫
R>2â

(
τ (s′)×R(s′)

R(s′)3
n‖(s′)− τ (s)× ∂sτ (s)

2|s− s′|
n‖(s)

)
ds′, (39)
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We can make this velocity (39) more SBT-like by changing the bounds on the integral. Because

the outer and common part match to O(ε̂) when R ≤ 2â, we can change the limit of integration in

the integral to obtain a finite part integral, which gives the final result

8πµUn(s) =
1

2
(τ (s)× ∂sτ (s))

(
ln

(
s(L− s)

4â2

)
+

7

6

)
(40)

+

∫ L

0

((
τ (s′)×R(s′)

R(s′)3

)
n‖(s′)−

(
τ (s)× ∂sτ (s)

2|s− s′|

)
n‖(s)

)
ds′,

for the velocity in the fiber interior. This is of exactly the same form as the first line of the

singularity representation (10), but without the additional angle-dependent terms in the second

line of (10).

3.3 Rotation from force

We next calculate the parallel rotational velocity Ψ
‖
f (s) due to the force density f(s) on the fiber

centerline,

Ψ
‖
f (s) = τ (s) ·

∫ L

0
Mrt

(
X(s),X(s′)

)
f(s′) ds′. (41)

When we substitute the definition of Mtr from [46, Eq. (3.16)] into (41), we have

8πµΨ
‖
f (s) =

∫
R>2â

(f(s′)×R(s′))

R(s′)3
· τ (s) ds′ (42)

+
1

2â2

∫
R<2â

(
1

â
− 3R(s′)

8â2

)(
f(s′)×R(s′)

)
· τ (s) ds′.

After using the triple cross product identity to rewrite (f(s′)×R(s′))·τ (s) = (R(s′)× τ (s))·f(s′),

the symmetry of the kernels Mrt and Mtr makes the asymptotics in the inner, outer, and common

expansions much the same as the previous section. The final result is that

8πµΨ
‖
f (s) =

1

2

(
ln

(
s(L− s)

4â2

)
+

7

6

)
(τ (s)× ∂sτ (s)) · f(s) + Ψ

(FP)
f (s) (43)

Ψ
(FP)
f (s) =

∫ L

0

(
R(s′)× τ (s)

R(s′)3
· f(s′)− τ (s)× ∂sτ (s)

2|s− s′|
· f(s)

)
ds′. (44)

in the fiber interior. To obtain a formula accurate to O(ε̂) up to and including the fiber endpoints,

we replace the first line in (43) with Ψ
‖,inner
f defined in (B.12).

Using the endpoint formulas in Appendix B, it is straightforward to show the symmetry (self-

adjointness in L2) of the mobility operator,∫ L

0
Ψ
‖
f (s)n‖(s) ds =

∫ L

0
Un(s) · f(s) ds. (45)

The only nontrivial part of this calculation is the rotlet term in the finite part integrals, in which

the order of integration in s and s′ must be swapped.
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3.4 Rotation from torque

The final asymptotic expansion we need is the rotational velocity Ψ(s) due to the torque n‖(s).

Because the doublet singularity has already been expanded in the translational case in (B.4), it

will be convenient to work with a full vector rotational velocity and torque

Ψn(s) =

∫ L

0
Mrr

(
X(s),X(s′)

)
n(s′) ds′, (46)

and specialize to the case of parallel velocity and torque later. We substitute the definition of Mrr

from [46, Eq. (3.14)] into (46) to obtain the vector rotational velocity,

8πµΨn(s) = −1

2

∫
R>2â

D
(
X(s),X(s′)

)
n(s′) ds′ (47)

+
1

â3

∫
R≤2â

((
1− 27R(s′)

32â
+

5R(s′)3

64â3

)
I +

(
9

32âR(s′)
− 3R(s′)

64â3

)
(RR) (s′)

)
n(s′) ds′.

The first term in (47) is the doublet, while the second term is the RPY tensor for R ≤ 2â.

In the outer expansion, we consider the part of the integral (47) where |s′ − s| is O(1),

8πµΨ(outer)
n (s) = −1

2

∫
|s−s′|>2â

D
(
X(s),X(s′)

)
n(s′) ds′. (48)

Importantly, the outer expansion (and the common expansion) is O(1). The inner expansion will

be O
(
ε̂−2
)
, so we will wind up dropping the entire outer expansion.

In Appendix B, we use the inner asymptotics (B.1) to derive the inner angular velocity

8πµΨ(inner)
n (s) = (pI(s)I + pτ (s)τ (s)τ (s))n(s), where (49)

pI(s) =
1

â2

(
9

8
+
â2

4

(
1

s2
+

1

(L− s)2

))
pτ (s) =

1

â2

(
9

8
− 3â2

4

(
1

s2
+

1

(L− s)2

))
,

in the fiber interior. The functions pI and pτ are different at the fiber endpoints, and are given in

(B.15). As in the translation case, the O
(
â2
)

terms in (49) are negligible in the fiber interior, but

are necessary to give C2 continuity with the endpoint formulas in (B.15).

Because the outer expansion is O(ε̂2) smaller than the inner expansion, the total asymptotic

velocity is just given by the inner expansion,

Ψn = Ψ(inner)
n . (50)

Specializing now to the case of parallel angular velocity from parallel torque, n = n‖τ , and Ψ
‖
n =

Ψn · τ , and dropping the negligible terms in the fiber interior from (49), we obtain the simple
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formula

8πµΨ‖n(s) =
9n‖(s)

4â2
(51)

in the fiber interior.

3.5 Comparison to Keller-Rubinow-Johnson

Let us compare our RPY-based slender body theory to the results we have from Section 2. We

first compare the theories when we have a well-defined SBT, i.e., for translation-translation and

rotation-rotation. Then, we use the form of the translation-rotation RPY coupling and our results

in Section 2 to postulate an SBT equation for trans-rot coupling with a single unknown parameter.

The parameter will be determined in the next section.

3.5.1 Trans-trans and rot-rot

All three-dimensional slender body theories agree that the translational velocity in the case when

Ψ‖ = 0 is given by

8πµU f = ln

(
4s(L− s)

a2

)
(I + ττ )f + (I − 3ττ )f +U

(FP)
f +O(ε), (52)

while our RPY-based theory (32) gives

8πµU f = ln

(
s(L− s)

4â2

)
(I + ττ )f + 4f +U

(FP)
f +O(ε). (53)

For the case of rotation from parallel torque, all theories of Section 2 agree that

8πµΨ‖n =
2n‖

a2
, (54)

while our RPY-based theory gives (51).

While we can set â to match the two translational theories or the two rotational theories, there

is no choice of â that will match both. There are thus two possible candidates for â. If we take

â = âtt = a
e3/2

4
≈ 1.12a, (55)

then the two translational theories match [29, Appendix A], but for rotation we obtain

8πµΨ‖n =
9n‖(s)

4â2
tt

=
36n‖(s)

e3a2
≈ 1.79

n‖

a2
, (56)

which is a 10% error from the known formula for a cylinder (50).
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On the other hand, if we take

â = ârr =
√

9/8a ≈ 1.06a, (57)

the rotational mobilities match, and the resulting RPY translational mobility becomes

8πµU = ln

(
s(L− s)

4â2
rr

)
(I + ττ )f + 4f +U

(FP)
f

≈ ln

(
4s(L− s)

a2

)
(I + ττ )f + (1.1I − 2.9ττ )f +U

(FP)
f ,

which gives a small O(1) error relative to translational SBT (52).

3.5.2 Trans-rot coupling

The more compelling question is whether we can use our findings to gain insights into the unknown

O(1) coefficient in translation-rotation SBT. Our RPY-based result is

8πµUn =

(
ln

(
s(L− s)

4â2

)
+

7

6

)
(τ × ∂sτ )

n‖

2
+U

(FP)
f , (58)

with the corresponding symmetric result for Ψ
‖
f in (43). Since Section 3.5.1 shows that the RPY

models capture the essential physics of the interaction of the fiber with the fluid, but with different

coefficients, we can postulate that the rotation-translation coupling in a true tubular geometry is

also of the form (58), but with different coefficients. Furthermore, since there is an O(1) error in

the boundary condition (3) in the result (10) of Johnson, we can expect that any modifications to

(10) will be O(1) (not log ε). Combining these two assumptions, we postulate a rotation-translation

coupling term of the form

8πµUn =

(
ln

(
4s(L− s)

a2

)
− k
)

(τ × ∂sτ )
n‖

2
+U (FP)

n +O(ε) (59)

for some unknown constant k, with the corresponding symmetric form for Ψ
‖
f . In the next section,

we fit the constant k to three dimensional boundary integral results. This gives us an empirical

three-dimensional SBT for rot-trans coupling to which we can compare the RPY theory.

4 Comparing to three-dimensional boundary integral

In this section, we compare our slender body theories of Sections 2 and 3 to a three-dimensional

boundary integral (BI) calculation. Because there is one uncertain coefficient, the O(1) coefficient

k in the rot-trans coupling term (59), the goal of these calculations is to find a k that can predict
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the full BI results to O(ε) accuracy. Because of this, we can fix the fiber geometry, vary the aspect

ratio ε, and check that the error in SBT decreases with ε. It will be convenient to fix L = 2 and

work on s ∈ [−1, 1] with an ellipsoidally-decaying radius function

ρ(s) =
√

1− s2. (60)

The radius at each point s is aρ(s), where we will vary a to study the limit ε = a/L→ 0.

As discussed in Section 2.2, under the assumption that the fiber is an infinitely thin membrane

containing fluid of viscosity equal to that of the exterior fluid, the force density multiplied by the

surface area element on the tubular boundary can be obtained by solving the integral equation

8πµÛ(s, θ) =

∫ 1

−1

∫ 2π

0
S
(
X̂(s, θ), X̂

(
s′, θ′

))
f̂
(
s′, θ′

)
dθ′ds′, (61)

for f̂(s, θ), where X̂ and Û are defined in (1) and (2).

In order to compare the BI output to SBT, we use the following sequence of steps:

1. Given the surface velocity Û(s, θ) = U(s) + aΨ‖(s) (τ (s)× r̂(s, θ)), solve (61) using the

numerical method of Section 4.1 to obtain the surface force density f̂(s, θ).

2. Compute the centerline force f(s) and parallel torque n‖(s) from f̂(s, θ) via (14) and (15).

3. Compute the SBT velocity induced from the BI force as

8πµUSB = ln
(
ε−2
)

(I + ττ )f + (I − 3ττ )f +U
(FP)
f (62)

+
(
ln
(
ε−2
)
− k
)

(τ × ∂sτ )
n‖

2
+U (FP)

n ,

8πµΨ
‖
SB =

2n‖

a2ρ2
+

1

2

(
ln
(
ε−2
)
− k
)

(τ (s)× ∂sτ (s)) · f + Ψ
(FP)
f , (63)

where the finite part integrals are defined in (7), (11), and (44), and we have used the local

drag coefficients for ellipsoidally-decaying radius (60).

4. Calculate the L2 norm of the error USB −U and Ψ
‖
SB −Ψ‖, and plot it as a function of ε.

Note that we apply the forward SBT operator, which gives velocity from force/torque, in (62) and

(63). This avoids inverting the slender body mobility, which is an ill-posed problem [14, 44]. To

evaluate the finite part integrals, we use the singular quadrature scheme developed in [43, 29, 30].

We have verified that the error in USB and Ψ
‖
SB decreases with ε in cases when rot-trans coupling

is negligible (i.e., cases when Ψ
‖
SB = 0 or the fiber is straight). Having done this, our focus will be
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on the case of curved filaments with parallel rotational velocity Ψ‖ ∼ 1/ε2, so that the magnitude

of the parallel torque n‖ is unchanged to leading order as we change ε. In this case, which is the one

that exposed the flaws in the SBTs of Section 2, the rot-trans coupling term in (62) is important,

while the one in (63) is negligible. Our goal is to find a k in (62) such that the formulas are accurate

to O(ε); that is, the relative errors in both ‖USB −U‖ and Ψ
‖
SB −Ψ‖ are O(ε).

4.1 Numerical method

To solve (61), we need a way to integrate the singularity at (s′, θ′) = (s, θ). We follow the idea of

Batchelor [2] and Koens [20] in adding and subtracting the flow from a translating, rigid prolate

ellipsoid, which has constant f̂ along its surface. The geometry of the prolate ellipsoid is chosen to

exactly cancel the singularity in (61). Specifically, we introduce an ellipsoid with geometry

X̂e

(
s′, θ′, s, θ

)
= X(s) + `(s, θ)

(
s′ − sc(s)

)
τ (s) + ae(s)r̂(s, θ′)

√
1− (s′)2. (64)

This ellipsoid has half axis length ` and radius ae. The point sc(s) is the coordinate on the ellipsoid

at which we want to cancel the singularity at X̂ (s, θ). Following Koens [20] again, we cancel the

singularity by imposing the conditions

X̂e

(
sc, θ

′, s, θ
)

= X̂ (s, θ) (65)

∂s′X̂e (sc, θ, s, θ) = ∂sX̂(s, θ) ∂θ′X̂e (sc, θ, s, θ) = ∂θX̂(s, θ).

Substituting the definition of X̂ from (1) and X̂e from (64), the matching conditions (65) give

three equations for the unknown parameters `, ae, and sc in (64),

aρ = ae
√

1− s2
c (66)

1 + aρ (τ · ∂sr̂) = ` (67)

a∂sρ = − aesc√
1− s2

c

. (68)

The first of these equations matches the positions and automatically matches the θ derivatives, while

the second two are obtained by projecting the s derivative equation onto the τ and r̂ directions,

respectively. To solve for sc, ae, and `, we first observe that (67) gives ` in terms of the fiber

geometry, and so we are left with a 2 × 2 nonlinear system for ae and sc. This system has two

solutions, only one of which gives sc ∈ [−1, 1],

sc =
ρ−

√
ρ2 + 4 (∂sρ)2

2ρ
, (69)
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with ae determined from sc using (66). When the fiber is a straight ellipsoid, ρ(s) =
√

1− s2 and

∂sr̂ = 0, so ae = a and sc = s, and therefore the effective ellipsoid reduces to the ellipsoid itself.

Because the traction multiplied by the area element on a translating prolate ellipsoid is constant,

the singularity subtraction scheme for (61) can now be written as [20, Eq. 5]

Û(s, θ) = M e(s, θ)f(s, θ) +
1

8πµ

∫ 1

−1

∫ 2π

0

(
S
(
X̂(s, θ), X̂

(
s′, θ′

))
f
(
s′, θ′

)
(70)

−S
(
X̂e(sc, θ, s, θ), X̂e

(
s′, θ′, s, θ

))
f (s, θ)

)
dθ′ds′,

where the matrix M e(s, θ) can be determined from analytical formulas for the resistance on a

prolate ellipsoid. In particular, defining the eccentricity

e =

√
1− a2

e

`2
, q = log

(
1 + e

1− e

)
, (71)

the resistance on a translating prolate ellipsoid is [18, Eqs. (44–45)] (see also [35])

ξ‖ =
16π`e3µ

(1 + e2)q − 2e
ξ⊥ =

32π`e3µ

(3e2 − 1)q + 2e
(72)

These give the relationship F‖ = U‖ξ‖ and F⊥ = U⊥ξ⊥. To obtain the traction times area element

on the surface, we divide the resistance by 4π and invert the result, thus obtaining an expression

for the matrix M e,

M e =
4π

ξ‖
τ (s)τ (s) +

4π

ξ⊥
(I − τ (s)τ (s)) . (73)

Because the singularity in (70) is canceled, we can now discretize the integral by standard quadra-

ture, with the singular point given a weight of zero (i.e., skipped). We will use Nθ uniformly spaced

points in θ and N Clenshaw-Curtis quadrature points in s. By assigning the singular point a weight

of zero, we reduce the accuracy of this quadrature scheme, which is spectrally accurate for smooth

integrands, to first order, as demonstrated in Appendix C. Our Matlab implementation of this

quadrature scheme is available at https://github.com/stochasticHydroTools/SlenderBody/

tree/master/Matlab/NumericalSBT/SingleLayer.

4.2 Rotating curved fiber

To extract the unknown coefficient k in the trans-rot coupling term in (62), we consider the half-turn

helix

X(s) =
1√
2

(
1

π
cos (πs),

1

π
sin (πs), s

)
, (74)
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which spins with angular velocity Ψ‖ ≡ 1/a2 and without moving, U = 0 in (2). Because the

fiber is not straight, the torque required to generate Ψ‖ will induce a translational velocity, and

a nonzero average force f must cancel this translational velocity to satisfy the boundary condi-

tion (3). This means that the translation-rotation coupling term in (62) will play a key role in the

accuracy of our SBT. Because of the large torque, the rotational velocity in (63) is dominated by

the rotation-rotation mobility, and so to study translation-rotation coupling we will focus only on

the translational velocity (62).

In Appendix C, we verify first-order accuracy in obtaining the cross sectional force f(s) in (14)

from the traction jump f̂(s, θ) in (70) as we refine Nθ and N together. We also show how the errors

‖USB −U‖L2 , which are obtained from the traction jump via (14) and then (62), change as we

refine Nθ and N for three different values of k ranging from k = 2 (which corresponds to throwing

out the second line of the rotlet line integral (10)), to k = 3. Since the values of ‖USB −U‖L2

do change as we continue to refine our discretization, we report error bars in Fig. 1 that give the

difference in USB between our last two levels of refinement. Based on Fig. 4, the numerical error

in the BI calculations likely causes an underestimate of the SBT error for k = 2 and k = 2.5, while

for k = 2.85 and k = 3 we likely overestimate the SBT error.

Looking at the SBT errors in Fig. 1, k = 2.85 is the clear winner among the possible choices

of k. For k = 2 (which is our first guess from the first line of the rotlet integral expansion (10)),

and k = 2.5, we observe an error which saturates to a constant as we decrease ε, meaning that the

error in the SBT (62) when k = 2 or 2.5 is asymptotically O(1). Increasing to k = 2.85, we observe

saturated errors that are roughly proportional to ε, which is exactly what we want to achieve in

SBT. When we increase again to k = 3, we see errors which initially decrease with ε, but appear

to plateau to an O(1) value. It appears then, that there is an optimal k around k = 2.85 which

makes the SBT formula (62) accurate to O(ε).

While this is by no means a proof that the correct rot-trans coupling coefficient4 in (62) is

k = 2.85, it does provide us with a good educated guess that can be used to cheaply approximate

boundary integral simulations with small error, and get an idea of how close our RPY formulas

are to the true three-dimensional dynamics. In particular, using an RPY radius of â ≈ 1.86a in

(58) gives the formula (59) with k = 2.85. This value of the RPY radius is comparable, but fairly

larger than, what we obtained by matching the trans-trans (âtt ≈ 1.12a) and rot-rot (ârr ≈ 1.06a)

4Indeed, there is no a priori reason to believe (62) or a similarly simple equation holds rigorously from (2) and

(13)–(15).
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Figure 1: Error in the rot-trans SBT relative to the boundary integral calculation for various ε and k. We

use the helical fiber (74) and prescribe a rotational velocity Ψ‖ ≡ 1/a2 with translational velocity U = 0.

We then solve the boundary integral equation (61) for the surface traction, use (14) and (15) to obtain the

centerline force density and parallel torque density, and then (62) to obtain an SBT velocity USB from these

densities. We plot the L2 norm of USB (which should be zero) for several different values of k. For k 6= 2.85,

the error is clearly O(1) with respect to ε, while for k = 2.85 the error decreases with ε at a rate of roughly

ε1. The data points here come from the most refined discretization in Fig. 2, while the error bars are the

difference between the most refined and second-most refined calculation.
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mobilities in Section 3.5.

5 Conclusion

We examined the deficiencies of existing slender body theories (SBTs) for rotating filaments,

and then proposed a semi-empirical SBT for tubular filaments derived from line integrals of

Rotne-Prager-Yamakawa (RPY) singularities. We showed that the singularity-based SBTs of

Keller+Rubinow and Johnson [19, 15] both suffer from the same issues related to rotation-translation

coupling: when the fiber is driven by an applied torque at its base, their theories imply that torque

induces an O(1) angular-dependent translational velocity on the fiber cross section, which violates

the SBT boundary condition that the fiber only translates and rotates. In addition, these previous

SBTs exhibit a lack of symmetry in the 2 × 2 mobility operator because of assumptions about

the relative order of magnitude of the fiber translational and rotational velocities. As we showed

previously [30, Sec. 5.3], neglecting rotation-translation coupling can lead to overestimation of the

torque required to induce large-scale filament deformations. It is therefore important to derive an

SBT which properly treats rotation-translation coupling.

As a workaround to the true problem of obtaining an SBT for a three-dimensional cylindrical

(or prolate-spherioidal) filament, we used a different definition of a filament as a line of infinitely

many regularized singularities, similar to what has been done previously by Cortez and Nicholas

[10]. Each component of the 2× 2 mobility operator (translation-translation, rotation-translation,

etc.) is then defined as a line integral of the corresponding fundamental regularized singularity,

which are defined in (23). Because these regularized singularities, which define the mobility for a

pair of “blobs,” give a symmetric 2×2 mobility, our mobility for fibers is automatically symmetric,

which alleviates one of the two major problems with previous SBTs. The other issue, the O(1)

angular dependence of the translational velocity on a cross section, is sidestepped because we use

an isotropic regularized singularity function (a delta function on a sphere). This comes at a price:

by using a series of spheres to represent the fiber centerline, we lose fidelity to the true three-

dimensional geometry. While this is far from ideal, it gives a mobility which is physical and simple

to compute, since all that results is a local drag term plus a finite part integral for the trans-trans,

rot-trans, and trans-rot terms, for which special quadrature schemes have already been developed

[43].

Using matched asymptotics on the RPY kernels, we found a 2× 2 mobility relationship, which
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we then compared to SBT for a three-dimensional tubular fiber. For translation-translation and

rotation-rotation, we found that the two mobilities take the same form, but with an O(1) difference

in the constants. The discrepancy in the constants can be removed via a judicious choice of

regularized singularity radius, which is different for each component of the mobility; â ≈ 1.06a

gives a perfect match in the rot-rot mobilities, while â ≈ 1.12a matches the trans-trans mobilities.

We used the correspondence between RPY asymptotics and SBT to posit the relationship (59) for

the off-diagonal rotation-translation components in SBT. The relationship has a single unknown

coefficient k ≈ 2.85, which we obtained in Section 4 from boundary integral calculations. The value

of k we found corresponds to a regularized singularity radius â ≈ 1.86a.

Using the RPY kernels simplified a number of potential issues that have plagued the devel-

opment of SBT. First, we were able to easily derive mobility formulas near the fiber endpoints

by modifying the domain of integration in the inner expansion (see Appendix B). The resulting

endpoint mobilities given in Appendix B are different from classical SBT, where the fiber radius

function must decay ellipsoidally at the endpoints, with the mobility transitioning to a constant

near the fiber boundaries. In other words, the RPY approach gives a physical regularization of the

local drag coefficients near the fiber endpoints, which is in contrast to other ad hoc approaches [29,

Sec. 2.1]. Furthermore, the RPY mobility immediately generalizes to multiple filaments, since the

flow induced on filament j can also be computed by an integral of the RPY kernel over filament i.

In SBT, while the pointwise velocity induced by singularities might be constant on a cross section

of fiber i, the same might not be true on a nearby fiber j, which leads to an ambiguity in how the

induced flow on the centerline of fiber j is assigned.

Our boundary integral calculations in Section 4 can be viewed as both a check on the accuracy

of the rotation-translation coupling terms in our RPY theory, and also as a semi-empirical SBT

for translation-rotation coupling. Indeed, these calculations are an attempt to find an SBT by

reversing the process Koens and Lauga [22] used to show that translational SBT can be derived

from the BI equation. While we showed that this approach is unworkable analytically for the

rotation-translation coupling problem, numerical calculation allowed us to extract the relationship

8πµUn ≈
(
ln
(
ε−2
)
− 2.85

)
(τ × ∂sτ )

n‖

2
+U (FP)

n +O(ε) (75)

for the translational velocity due to parallel torque on an ellipsoidal filament, with the finite part

integral U
(FP)
n defined in (11). Of course, this result is an estimate for a particular filament, and

there is no way to show it is universal, although tests on a one-turn and two-turn helix gave similar
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results. Still, our guess for the rotation-translation coupling tensor is informed by the asymptotics

of the RPY tensor, and so, if it is incorrect or non-universal, the RPY mobility (58) must miss

some of the essential physics in the modeling of slender filaments. Given the number of studies

that have used the RPY tensor to model filament hydrodynamics (e.g., [47, 41, 17, 48]), this would

be concerning.

Our work here is by no means the final say on SBT for twisting filament, but is rather intended as

a starting point to provoke future research in three main directions. First, there is the possibility

of developing a singularity representation for the flow around a twisting filament that properly

matches the velocity on the fiber cross section. For an ellipsoidal filament, the velocity on a cross

section due to a rotlet (10) can be expanded using (12) as

8πµu(Ψ)
(
X̂ (s, θ)

)
=

2n‖

a
(τ × r̂) +

n‖

2

(
ln
(
ε−2
)
− 3
)

(τ × ∂sτ ) +U (FP)
n (76)

+
n‖κ

2
(eb cos 2θ − en sin 2θ) +O (ε) .

Thus, the task is to find another singularity (or set of singularities) that can eliminate the O(1)

dependence on 2θ in the second line, thereby making the cross-sectional velocity a pure rotation

(the τ × r̂ term) plus a pure translation (the next two terms in the first line). Based on our

empirical SBT (75), we expect such a singularity, if it exists, to eliminate the angular dependence

while introducing a small correction to the O(1) term multiplying τ × ∂sτ .

Given that it is difficult to find such a singularity representation, if it exists at all, our empirical

approach in Section 4 offers some promise, if only we could reach even smaller ε. In the case when

Ψ‖ ∼ 1/ε2, a more accurate numerical approach is necessary to do so, since in that case the surface

tractions scale like 1/ε, and it becomes difficult to confirm O(ε) scaling of asymptotic expressions.

And finally, there is an opportunity to analyze what Stokes-related partial differential equation

such a slender body theory is the solution of (this is an extension of the work of Mori, Ohm, and

others for translation [32, 31, 33]).
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Appendix A Isotropic single layer expansion

To expand the isotropic single layer (18), we begin with an inner expansion of the displacement

R(s, s′, θ, θ′) = X̂(s, θ)− X̂(s′, θ′),

R(s, s′, θ, θ′) = X̂(s, θ)− X̂(s′, θ′) = X(s)−X(s′) + êρ(s, θ)− êρ(s′, θ′), (A.1)

where êρ(s, θ) is the unit vector going fromX(s) to X̂(s, θ). Since the geometry is more complicated

in this true three-dimensional case, it is helpful to parameterize êρ by an angle θi(s) satisfying

∂sθi = eb · ∂sen (the curve torsion) [22, Eq. (2.2)]. This gives [22, Sec. 2]

êρ(s, θ) = en cos (θ − θi(s)) + eb sin (θ − θi(s)) (A.2)

∂sêρ(s, θ) = −κ(s) cos (θ − θi)τ (s)

Substituting into (A.1), we can now write the first two terms in the Taylor expansion of R and

1/R as

R
(
X̂(s, θ), X̂(s′, θ′)

)
≈ a

(
−ξτ + ∆êρ(s, θ, θ

′)
)

+ a2

(
ξ2

2
∂sτ − ξκ cos (θ′ − θi)τ

)
1

R
(
X̂(s, θ), X̂(s′, θ′)

) =
1

a
√
ξ2 + ∆êρ ·∆êρ

+
−ξ2κ cos (θ′ − θi) + ξ2/2τ ′ ·∆êρ

2
√
ξ2 + ∆êρ ·∆êρ

3 (A.3)

where ∆êρ(s, θ, θ
′) = êρ(s, θ)− êρ(s, θ′) and ξ = (s′ − s)/a is order 1. Note the appearance of the

centerline curvature (scalar κ and vector ∂sτ ) at this order, which is vital to yield proper rot-trans

coupling. Combining (A.3) with the Taylor series representation f(s′, θ′) = f(s, θ′) + aξ∂sf(s, θ′),

we have the inner expansion of the integrand in (16) as

f(s′, θ′)

R
=

f(s, θ′)

a
√
ξ2 + ∆êρ∆êρ

+
ξ∂sf(s, θ′)√
ξ2 + ∆êρ∆êρ

(A.4)

+
−ξ2κ cos (θ′ − θi) + ξ2/2(∂sτ ·∆êρ)

2
√
ξ2 + ∆êρ∆êρ

3 f(s, θ′) +O(ε).

The second line already makes it clear how rot-trans coupling is going to arise. If f(s, θ′) = f(s)

(no angular dependence), then there will still be a term in the velocity proportional to cos θf(s),

which is rotational velocity coming from translational force, or rot-trans coupling.

To complete the expansion, we proceed with the integration of (A.4) from ξ = −s/a to ξ =

(L−s)/a. The integration can be done exactly, and then expanded in ε to yield simpler expressions

[22, Table 1]. After using (A.2) to determine ∂sτ · ∆êρ = 0, then integrating what remains, we
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have

U i1(s, θ) =

∫ 2π

0

(
ln

(
4s(L− s)

a2(∆êρ ·∆êρ)

)
f(s, θ′) + (L− 2s) ∂sf(s, θ) (A.5)

−εκ cos (θ′ − θi(s))f(s, θ′)

2

(
ln

(
4s(L− s)

a2(∆êρ ·∆êρ)

)
− 2

))
dθ′ +O(ε2).

We substitute the one-term Fourier series representation (17) into (A.5) and integrate over θ′ to

obtain (18). To integrate, we use ∆êρ ·∆êρ = 2 (1− cos (θ − θ′)).

Appendix B Inner expansions for RPY asymptotics

This appendix is devoted to the inner expansions of the RPY velocities (22). Using the rescaled

variable ξ defined in (24), we write the series expansions

R(s′) = X(s)−X(s′) = −ξâτ (s)− ξ2â2

2
∂sτ (s) +O

(
â3
)

(B.1)

RR = ξ2â2τ (s)τ (s) +O
(
â3
)
,

R2 = R ·R = ξ2â2 +O
(
â3
)
, R = |ξ|â+O

(
â2
)
,

R−1 =
1

|ξ|â
+O(1), R−3 =

1

|ξ|3â3
+O

(
â−2
)
, R−5 =

1

|ξ|5â5
+O

(
â−4
)
.

f
(
s′
)

= f(s) + ξâ∂sf(s) +O(â2) n‖
(
s′
)

= n‖(s) + ξâ∂sn
‖(s) +O(â2),

which we substitute into the corresponding RPY velocity formulas (26), (34), (42), and (47). What

results is two separate integrals over ξ: one for |ξ| > 2 (when the RPY spheres do not overlap),

and another for |ξ| ≤ 2 (when they do). The bounds on the integrals are

∫
|ξ|>2

f(ξ) dξ =



∫ −2
−s/â f(ξ) dξ +

∫ (L−s)/â
2 f(ξ) dξ 2â < s < L− 2â∫ (L−s)/â

2 f(ξ) dξ s ≤ 2â∫ −2
−s/â f(ξ) dξ s ≥ L− 2â

(B.2)

∫
|ξ|≤2

f(ξ) dξ =



∫ −2
−2 f(ξ) dξ 2â < s < L− 2â∫ 2
−s/â f(ξ) dξ s ≤ 2â∫ (L−s)/â
−2 f(ξ) dξ s ≥ L− 2â

With these integration bounds, the inner velocity can be computed for any s on the filament, as

we do next.
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B.1 Translation from force

Beginning with the trans-trans mobility (26), we start with the part of the integral in the region

R > 2â. For this we first need to integrate the inner expansion of the Stokeslet∫
R>2â

S
(
X(s),X(s′)

)
f
(
s′
)
ds′ ≈

∫
|ξ|>2

(
I + τ (s)τ (s)

|ξ|â

)
f(s)â dξ (B.3)

= (I + τ (s)τ (s))f(s)

∫
|ξ|>2

1

|ξ|
dξ.

Unlike the Stokeslet, the doublet term is only included in the inner expansion. Its expansion is

given by

2â2

3

∫
R>2â

D
(
X(s),X(s′)

)
ds′ ≈ 2â2

3

∫
|ξ|>2

(
I − 3τ (s)τ (s)

|ξ|3â3

)
f(s)â dξ (B.4)

=
2 (I − 3τ (s)τ (s))f(s)

3

∫
|ξ|>2

1

|ξ|3
dξ.

It still remains to include in the inner expansion the term for R ≤ 2â. For this we have the inner

expansion of the first term∫
R≤2â

(
4

3â
− 3R (s′)

8â2

)
f
(
s′
)
ds′ ≈ f(s)

∫
|ξ|≤2

(
4

3
− 3|ξ|

8

)
dξ. (B.5)

Likewise the second term for R ≤ 2â has the inner expansion∫
R≤2â

1

8â2R (s′)
(RR)

(
s′
)
f
(
s′
)
ds′ ≈ τ (s)τ (s)f (s)

∫
|ξ|≤2

|ξ|
8
dξ. (B.6)

Adding the terms (B.3), (B.4), (B.5), and (B.6), and computing integrals using the bounds (B.2),

we obtain the complete inner expansion

8πµU
(inner)
f (s) = (aL(s) (I + τ (s)τ (s)) + aI(s)I + aτ (s)τ (s)τ (s))f(s) (B.7)

aL(s) =



ln

(
(L− s)s

4â2

)
2â < s < L− 2â

ln

(
(L− s)

2â

)
s ≤ 2â

ln
( s

2â

)
s ≥ L− 2â

aI(s) =



4− â2

3s2
− â2

3(L− s)2
2â < s < L− 2â

2 +
4s

3â
− 3s2

16â2
− â2

3(L− s)2
s ≤ 2â

2 +
4(L− s)

3â
− 3(L− s)2

16â2
− â2

3s2
s ≥ L− 2â

aτ (s) =



â2

s2
+

â2

(L− s)2
2â < s < L− 2â

s2

16â2
+

â2

(L− s)2
s ≤ 2â

(L− s)2

16â2
+
â2

s2
s ≥ L− 2â

The velocity U
(inner)
f is twice continuously differentiable, since it is the integral of a function which

is once continuously differentiable.
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B.2 Rot-trans and trans-rot coupling

We now move on to the inner expansion in the case of translation-rotation coupling (34). Beginning

with the rotlet term for R > 2â, we write the rotlet in terms of the inner variables as

τ (s′)×R(s′) ≈ ξ2â2

2
(τ (s)× ∂sτ (s)) (B.8)∫

R>2â

τ (s′)×R(s′)

R(s′)3
n‖(s′) ds′ ≈

∫
|ξ|>2

(τ (s)× ∂sτ (s))

2|ξ|â
n‖(s)â dξ. (B.9)

We next need to account for the term for R ≤ 2â, or the second term in (34). Using (B.8), we have

that

1

2â2

∫
R<2â

(
1

â
− 3R

8â2

)(
n(s′)×R(s′)

)
ds′ ≈ (τ (s)× ∂sτ (s))

4â

∫
|ξ|<2

(
1− 3

8
|ξ|
)
ξ2â dξ. (B.10)

Adding (B.9) and (B.10) and using (B.2) to compute the inner expansion integrals, we obtain

8πµU (inner)
n (s) =

n‖(s)

2
(τ (s)× ∂sτ (s)) cc(s) (B.11)

cc(s) =



ln

(
(L− s)s

4â2

)
+

7

6
2â < s < L− 2â

ln

(
(L− s)

2â

)
+

7

12
+

s3

6â3
− 3s4

64â4
s ≤ 2â

ln
( s

2â

)
+

7

12
+

(L− s)3

6â3
− 3(L− s)4

64â4
s ≥ L− 2â

which is a twice continuously differentiable function.

The inner expansion of angular velocity from force is given symmetrically as

8πµΨ
‖,(inner)
f (s) =

1

2
cc(s) (τ (s)× ∂sτ (s)) · f(s). (B.12)

B.3 Rotation from torque

The inner expansion for (47) contains two parts: the doublet, and terms for R ≤ 2â. We have

already seen the expansion of the doublet in (B.4). Multiplying the result in (B.4) by the appropriate

prefactors, we obtain

−1

2

∫
R>2â

(
n(s′)

R(s′)3
− 3

R(s′) (R(s′) · n(s′))

R(s′)5

)
ds′ ≈ −(I − 3τ (s)τ (s))f(s)

2â2

∫
|ξ|>2

1

|ξ|3
dξ, (B.13)

which which is accurate to O
(
ε̂−1
)
, although in the fiber interior that term actually cancels, leaving

an O
(
log ε̂−1

)
dependence.
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In a similar way, the inner expansions of the R ≤ 2â terms in the fiber interior are

1

â3

∫
R<2â

(
1− 27R(s′)

32â
+

5R(s′)3

64â3

)
n(s′) ds′ ≈ n(s)

â2

∫
|ξ|≤2

(
1− 27

32
|ξ|+ 5

64
|ξ|3
)
dξ (B.14)

1

â3

∫
R<2â

((
9

32aR(s′)
− 3R(s′)

64â3

)
(RR) (s′)

)
n(s′) ds′ ≈ τ (s) (τ (s) · n(s))

â2

∫
|ξ|≤2

(
18− 3|ξ|2

64

)
|ξ| dξ

with an error of O(ln ε̂) in the fiber interior and O(ε̂−1) at the endpoints.

Using the integral bounds (B.2) to integrate and sum (B.13) and (B.14), the complete inner

expansion for Ψn is given by

8πµΨ(inner)
n (s) = (pI(s)I + pτ (s)τ (s)τ (s))n(s), where (B.15)

pI(s) =
1

â2



9

8
+
â2

4

(
1

s2
+

1

(L− s)2

)
2â < s < L− 2â

9

16
+
s

â
− 27s2

64â2
+

5s4

256â4
+

â2

4(L− s)2
s ≤ 2â

9

16
+
L− s
â
− 27(L− s)2

64â2
+

5(L− s)4

256â4
+

â2

4s2
s ≥ L− 2â

pτ (s) =
1

â2



9

8
− 3â2

4

(
1

s2
+

1

(L− s)2

)
2â < s < L− 2â

9

16
+

9s2

64â2
− 3s4

256â4
− 3â2

4(L− s)2
s ≤ 2â

9

16
+

9(L− s)2

64â2
− 3(L− s)4

256â4
− 3â2

4s2
s ≥ L− 2â

which is twice continuously differentiable.

Appendix C Convergence of quadrature scheme

In this appendix, we discuss the convergence of the quadrature scheme for (70) for the rotating

curved fiber in Section 4.2. We report convergence as a function of Nt = NNθ the total number of

points on the filament boundary. In order to obtain smooth convergence, both N and Nθ must be

increased together. To maintain a similar spacing in the axial and circumferential directions, we

use Nθ = 16, 20, . . . 32, and N ≈ 0.25Nθ/ε.

We first perform a self-convergence study in Fig. 2, where we look at the L2 errors in f and n‖,

computed from (14) and (15), under refinement. For the force, the error at a given Nt is defined as

the L2 difference of f when compared to the next largest Nt, and similarly for n‖. As Nt increases,

the force is asymptotically first-order accurate for every ε. The torque converges at a faster rate

because, in this example, torque is dominated by local rotation-rotation dynamics.
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Figure 2: Convergence plot for the curved rotating filament studied in Section 4.2. We show the self-

convergence of our numerical method for (left) the force f and (right) the parallel torque n‖ on each cross

section. The “error” is the L2 difference of each quantity relative to the next level of refinement, normalized

by the L2 norm of the most refined solution.

Figure 3: SBT asymptotic errors for rotational velocity in the fully coupled problem. We show how the

relative error a2
(

Ψ
‖
SB −Ψ‖

)
changes as we change ε and the total number of discretization points Nt. The

SBT rotational velocity Ψ
‖
SB is computed from (63) and is dominated by rotation-rotation dynamics. It

therefore does not depend on k, and so we show only a single k = 2.85.
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In Figs. 3 and 4, we show how the convergence of the force and torque affects the convergence

of the SBT errors, USB − U and Ψ
‖
SB − Ψ‖ for various ε and k. As we increase Nt, our hope is

that the errors will saturate as we isolate the SBT asymptotic error from the boundary integral

numerical error. For rotational velocity, which is dominated by torque and therefore independent

of the k used in (63), this is indeed the case, as we see constant errors under refinement in Fig.

3. Furthermore, the relative error in Ψ
‖
SB scales roughly as ε2 log ε, which is expected since the

rotational velocity is dominated by the rot-rot term.

For translational velocity, we do not observe saturation of ‖USB −U‖ in Fig. 4, but we can still

obtain a good estimate of the SBT error by looking at our finest discretizations. In particular, the

errors for k = 2 and k = 2.5 appear to be approaching a constant of about 0.2 and 0.1, respectively,

irrespective of the particular value of ε. This indicates an O(1) error in the SBT asymptotic

equation (62) for those values of k. However, when we increase k further to 2.85 and later 3, the

errors are much smaller, indicating that the SBT theory gets more accurate. To account for our BI

solutions not being fully converged, we report error bars in Fig. 1 that give the difference between

our most refined and second-most refined errors in USB (the difference between the rightmost and

second-rightmost point on each colored curve in Fig. 4).
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