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Motivation

Fibers involved in cell mechanics

microtubules Q g actin filaments @ intermediate filaments
@ =24 nm @=79nm g @=10nm

stiff rods (Lp= L) semiflexible ([ Lg=L) flexible (Lp=L)
Pawlizak and Kis, University of Leipzig

L, =persistence length, L =fiber length, a = eL =fiber radius,
€ =slenderness ratio
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Cytoskeleton rheology

Motivation
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Motivation

Cross-linked actin gels

o Very slender semi-flexible fibers (aspect ratio 102 — 10%) suspended
in a viscous solvent.

@ For now cross linkers modeled as simple elastic springs.

o Periodic cyclically sheared unit cell: viscoelastic moduli.
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Motivation

Does nonlocal hydrodynamics matter?

Monteith et al. Biophysics Journal. (2016)
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Motivation
Does nonlocal hydrodynamics matter?

@ Sometimes flows created by individual fibers add up constructively to
produce large-scale flows, which advect network.

@ For example, cytoplasmic streaming on previous slide or contraction
of a myosin-actin gel (must expel liquid out).

@ Flow is generated at scales of fiber thickness: multiscale problem.

@ Role of long-ranged (nonlocal) hydrodynamics unclear for
rheology of cross-linked actin gels.

Dynamics of Flexible Fibers in Viscous Flows and Fluids, Ann. Rev. Fluid Mech. 51:539,
du Roure, Lindner, Nazockdast, Shelley [1]
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Fibers in Stokes flow
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© Fibers in Stokes flow
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Fibers in Stokes flow
Fiber Representation

Simple approach is to represent a fiber as a discrete chain of
beads/blobs: multiblob model

More efficient approach is to represent a fibers as continuum curve
O. Maxian et al. ArXiv:2201.04187

An integral-based spectral method for inextensible slender fibers in Stokes flow [2]
The hydrodynamics of a twisting, bending, inextensible fiber in Stokes flow [3]
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Fibers in Stokes flow
Inextensible multiblob chains

o Inextensibility:[|X;11 — Xj|| =/~ a
(e.g., a or 2a).

@ Tangent vectors:
Tir1/2 = (Xjz1 — X;) /1

@ Bending angles:
oS qj = Tjy1/2 " Tj-1/2

e Elastic energy (bending modulus xp)

2I€b N1 Q
_ - 2 J
By =1 > sin” ()

Jj=1

Worm-like polymer chain
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Fibers in Stokes flow
Inextensible continuum fibers

@ Persistence length due to thermal fluctuations & = 2kp/ (kg T) > |
gives us a continuum limit, o; < 1.
o Fiber centerline X (s) where the arc length 0 < s < L.
@ The tangent vector is 7 = 0X/0s = X, and the fibers are
inextensible,
T(s,t)-7(s,t) =1 V(s,t).

@ Bending energy functional is integral of curvature squared:

Ep (X) = 27’7"2 (%)2 = E[X()]= Z”/ds X5 ()]
j=1
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Fibers in Stokes flow
Bending elasticity

@ Bending force FJ(.b) on interior blob j gives us elastic force density

0E, K
Fjb) = _TXI; = T;f (_Xj*2 + 4XJ'71 - 6XJ' + 4XJ'+1 — Xj+2)
d Epend
Fp ~ —Irp D*X fp= % = —kpXesss
b Kb = b 5X Kb

e Endpoints naturally handled discretely, giving in continuum natural
BCs for free fibers:

Xes (0/L) =0, X (0/L) = 0.
e Tensions T; ;/» — T(s) are unknown and resist stretching,
Ai=TipTivye — TicipTicye = A=(T7)..
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Fibers in Stokes flow Hydrodynamics

Fluid dynamics

e For multiblob chains in Stokes flow, fluid velocity v (r, t) satisfies
V-v=0and
Vr=nVv+ > F;d,(X;—r),
J
where ¢, (r) is a blob kernel of width ~ a, and

F=—/kp,D*X+ A
@ Blobs/fiber are advected by fluid
U; =dX;/dt = /dr v(r,t)o,(X;—r).

e Continuum limit is obvious (without Brownian fluctuations)

L
Vv (r,t) =nV3v (r, t) + /0 ds f(s,t)d, (X(s,t) —r)

U (s, t) = X (s, 1) / dr v (1, £) 8, (X(s, ) — 1)
f = —rpXosss + A
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Fibers in Stokes flow Hydrodynamics

Multiblob chains in Stokes flow

@ We can (temporarily) eliminate the fluid velocity to write an equation
for fiber only.

@ Define the positive semi-definite hydrodynamic kernel
R (r1,r2) = /53 (r1 — r’) G (r’, r”) 5a (r2 — r”) dr'dr”,
where G is the Green's function for (periodic) Stokes flow.

@ Define M (X) = 0 to be the symmetric positive semidefinite (SPD)
mobility matrix with blocks

M (X;, X;) = R (X, Xj) = R (X; — Xj).
@ Discrete dynamics = inextensibility +
U=dX/dt=M(X)F(X)=M (—/nb D*X + A)
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Fibers in Stokes flow Hydrodynamics

Inextensible fibers in Stokes flow

@ Define a positive semidefinite mobility operator

L
(MVMHMQZ/WR@®NQWQ

0
@ Continuum dynamics is a non-local PDE

U=X;=MI[X] (—kpXssss + A)
T(s,t)-71(s,t) =1 V(s,t).
@ Is this PDE well-posed? We have shown numerically that

o Fiber velocity converges pointwise (strongly) up to the endpoints.
o Moments of A converge, e.g., stress tensor (weak convergence).
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Fibers in Stokes flow Hydrodynamics

Rotne-Prager-Yamakawa kernel

R (r1,rp) = /63 (ri=v)G (v, ¢") 6, (ra —v") dr'dr”
@ Taking the regularization kernel and unbounded Stokes flow
5, (r) = (47ra2)_1 5(r—a)
gives the Rotne-Prager-Yamakawa (RPY) kernel

~1 232
8mn) " | S(r)+—=D(r) ]|, r>2a
R(r) = 9r3 3ryr®r
-1 o Sryror <
(6an) [(1 32a> I+ (323) 2 ] , r<2a
1 T 1 T
S(r)= Sr (I + ) =G, and D(r)= Sanrd (I 13 )
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Fibers in Stokes flow Hydrodynamics

Slender Body Theory

L
(MXOIF() (5):/0 ds' R (X(s) — X(s)) f(s')

e Matched asymptotics gives (away from endpoints)
(MF)(s) = (MsgT ) (s) = (MLF) (s) + (MnLF) (s) =

_ 871”7 (Iog (“4‘32.5)5) (1 7(s)(s)T) + 4|) f(s)

1 L 14 7(s)7(s)7
— ds' S (X(s)=X(s))f(s') = [ —————2— | f
ra o (s x06) = xee £(s) - (FEETE Y
o For a special choice of blob radius a = (e*/2/4) eL = 1.12¢L, this
formula matches the widely-used Slender Body Theory (SBT).

@ Our approach automatically works for multiple fibers, and also gives
us a natural regularization of the endpoints (not shown).
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Fibers in Stokes flow Hydrodynamics

Slender body theory

Msgr = M+ My =0 <|og <(L;S)s>) +0(1)

@ SBT is great for numerics since it involves quadratures that can be
computed accurately for smooth f to spectral accuracy (starting
with Tornberg+Shelley = TS).

@ The local drag term is logarithmically singular at endpoints for
cylindrical fibers.
TS use (unphysical) ellipsoidal fibers: M| = O (log(L/a)).

@ M, has spurious negative eigenvalues for high spatial frequencies,
so Mgt is not SPD and equations are definitely not well-posed.
TS use artificial regularization.
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Fibers in Stokes flow Adding twist

Twisting Fibers

@ How to represent twist (Bishop frame)?

e Hydrodynamics with twist? (no slender-body theory exists)

@ (When) does twist matter?
Flagella, formins twisting growing actin filaments, macroscopic
chirality in cells, and ?
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Fibers in Stokes flow Adding twist

@ For given force densities f(s, t) and parallel torque densities n(s, t)
along the fiber centerlines,

L
Vr =nVv —I—/O ds [f(s) + n(s)g x 7(s)| 02 (X(s) —r),
Qll(s) = 7(s) - /er x v (r, )6, (X(s) —r)

@ Should fiber exert perpendicular torques on the fluid?
Not for sufficiently slender fibers (ArXiv:2201.04187) [3].
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Fibers in Stokes flow Adding twist

Bishop frame

@ To each point along the fiber we attach an orthonormal triad
B(s) = [7(s),a(s), b(s)] called the Bishop frame, which satisfies the
no-twist condition:

as;-b=0 = Osa=(Tx715)xa
e Configuration represented by twist angle 6(s) between the material
frame of the fiber cross section and the Bishop cross section.
e Elastic force has bend-twist coupling (belt trick):
f = —kpXssss + Kt (05 (T X TS))s + A,
n = K¢bss.
@ Evolve twist density in time via

905 (s, t) = 0,0l — (QL . TS) .
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Fibers in Stokes flow Inextensibility

Tension equation

X: = MI[X] (—rpXssss +A) and A= (TT),
e Traditional approach (Tornberg+Shelley) is to solve tension equation
T-T=Xs-Xs=1 = (X¢);-Xs =0 non-local BVP
@ Tension equation is linear in T(s) but very nonlinear in X and its
derivatives, causing aliasing issues.

@ Method does not strictly enforce inextensibility numerically, requiring
adding a penalty for stretching.

@ To solve these problems, let us first go back to multiblobs for
simplicity, and then take a continuum limit.
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Fibers in Stokes flow Inextensibility

Inextensible motions

U —-U

T As L2 X Tjt1/2 =
i—1

U=KQ" = |Up, -, Up+ AsY Q" p X Tjy1o,| =
j=0
S
(lc X ()] 2" (.)> (s) = U(s) = U (0) +/ ds’ (QL (s) x T (s’)) .

0
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Fibers in Stokes flow Inextensibility

Principle of virtual work

@ Principle of virtual work: Constraint forces should do no work for
any inextensible motion of the fiber:

ATU=(K7A) @ =0 vot = K'A=0
N N

KTA= Y Aj- As [ D A | xTiggp| =
j=0 =i

L L
(IC X (IA())(s) = [/Ods’A (s'), Vs </Sds’)\ (s’)> X T(S):| =0.
@ We can express this in terms of tension
L
Vs / dA(s) = —T(s)r(s) = A=(Tr).

but the principle of virtual work is an integral constraint.
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Fibers in Stokes flow Inextensibility

Continuum equations

o New weak formulation of inextensibility constraint:
Xy =K [X] Qt= M [X] (_bessss + >‘)
K*[X]A=0

T =Qt x T
X(s,t) = X(0, t) —i—/ ds' T (ds', t)
0

@ Two improvements:

e Evolve tangent vector 7 rather than X: strictly inextensible.
o Expose saddle-point structure of problem (energy conservation).
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Numerical Methods

Outline

© Numerical Methods
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Numerical Methods
Slender-Body Quadrature

@ Recall slender body theory (SBT) Msgt = M|+ M.
@ We avoid SBT via slender body quadrature for RPY

/ 22 / / ’
Uis) = /D(S):Iss’>2a <S (X(S)7 X(s )) " ?D (X(S)? X(s ))> f (S ) o

s+2a
+/ (.. .RPY...)f(s) ds'
s—2a

@ Apply singularity subtraction even though not technically singular:

e g L[ (T ¢
/D(S)S(X(s),X(s ) f(s') ds’ = /D(S)( >f( )d

87 |s — |

+ /D . (S (X(), X() £ () — — <I+T(S)T(S)>f(s)> ds’

 8my |s — 5|

@ Taking the domain D(s) to be [0, L] in the second gives the finite part
integral from SBT!
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Numerical Methods
Spatial Discretization

@ We develop a spectral discretization in space, based on representing
all functions using Chebyshev polynomials, with anti-aliasing.

@ Collocation discretization of mobility equation gives a saddle-point

system
-M(X) K(X)\ (A [M(X)(—rsDBcX)
K*X) 0 Q/ 0

which we solve iteratively using a block-diagonal preconditioner.

@ We only use O(16 — 32) Chebyshev points per fiber so doing dense
LA for individual fibers is OK.

@ Bending elasticity can either be discretized using rectangular
collocation (more accurate, needs BCs) or by discretizing bending
energy functional (more robust, natural BCs).

A. Donev (CIMS) Fibers 3/2022  29/47



Numerical Methods
Temporal discretization

o Backward Euler is the most stable since it ensures strict energy
dissipation; also for dense suspensions.

e Split mobility into local (e.g., intra-fiber) and non-local (e.g.,

inter-fiber) parts, M = M, + My

K'Q" =M (—kpDE X" 4 AT
+M,I</L (—HbD%an + An) + an
(K*)n An+1 :0

where X% = X"+ AtK /2 Qnt1/2,

@ Actual fiber update is strictly inextensible
71 = rotate (77, AtQ").

e f" contains other forces such as cross-linkers (can be stiff).

Flow is easy to add to the rhs.
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Numerical Methods
The gory details

@ For dense suspensions, supplement L+NL splitting with additional 1-5
GMRES iterations for stability.

@ Evaluate long-ranged hydrodynamic interactions between Chebyshev
nodes in linear time using Positively Split Ewald (PSE) method (FFT
based for triply periodic), also works for deformed/sheared unit cell
(Fiore et al. J. Chem. Phys. (2017)).

© For nearby fibers, use specialized near-singular quadrature (uf
Klinteberg and Barnett. BIT Num. Math. 2020 [4]) to get 2-3 dlglts

@ For intra-fiber hydro use specialized slender-body quadrature ala
Anna Karin-Tornberg.
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Actin gels

Outline

@ Actin gels
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Actin gels

Actin network /gel
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Actin gels
Cross Linkers

@ Cross linker (CL) between X(i)(s;*) and XU)(SJ?*), with
R= Hx<f>(s;k) — XU)(s7) ‘

@ Model cross-linker as just a spring with Gaussian smoothing to
preserve spectral accuracy (std= o ~ 0.1L):

FCL(s) — K, (1 3 /l;) 55— 5) /L ds’ (x(i) (s) — XU)(S’)) bo(s" = sf)
0

@ Cross linker is force and torque-free.

e Randomly generated dense network of CLs (16 attachment sites per
site) to give about 12 CLs per fiber (elastic network).
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Actin gels
Cross-linked network
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Rheology

Apply linear shear flow vo(x, y, z) = 4 cos(wt)y and measure the
visco-elastic stress induced by the fibers and cross links:

U(i): / ds Xi(s) (Fs(s) + A(s)) "
flbers
SRy / ds (XI(s)F(s) + X (s)fLI)(s))
CLs (i)
% = G'sin(wt) + G” cos(wt) = elastic+viscous.
0
o2 [T o2 [T
G :%77_ . O'2]_S|n(wt)dt G :%77_ 5 ngcos(wt)dt.
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Actin gels

Viscoelastic moduli: Maxwell fluid

10

G, Q" (Pa)

w (Hz)
Elastic modulus G’ and viscous modulus G” for 700 fibers + 8400 CLs

A. Donev (CIMS) Fibers 3/2022  37/47



Actin gels

Nonlocal hydrodynamics

—e— G, local —8— G, local
0.75 F|- @ =@, short range — B —=G", short range

107 10" 10° 10
w (Hz)
Reduction in viscoelastic moduli with only local drag or
only inter-fiber nonlocal hydrodynamics.
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Rheology permanent CLs

@ Network relaxation time 7. ~ 0.5 — 1s
o Forw > 7,
e Quasi-steady; elastic solid
o Small effect of nonlocal hydrodynamics (~ 10%)
e For w ! ~ ..
o G"= G
e Max change in G’ due to inter-fiber hydro
e Forw < 7.

o Fibers and CLs “frozen™; network behaves like a viscous fluid
o G" > G’; up to 25% change due to intra-fiber hydro.
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Actin gels
Dynamic cross linking

Kinetic Monte Carlo algorithm for cross linking:

e Discrete set of binding sites on each fiber (for efficiency).

@ Doubly-bound CLs act as simple elastic springs.
Assumptions behind linking algorithm

e Diffusion of cross-linkers is fast (diffusion-limited binding)

@ Four reactions between fibers and CL reservoir obey detailed balance

Fiber turnover kon kon,s
Single end (un)binding Second end (un)binding
1/7s
kogt Kofts
Dyl AN -
by + 8¢

"Simulations of dynamically cross-linked actin networks...,” O. Maxian et al, PLOS
Comp. Bio., 17(12): €1009240, 2021 [bioRxiv:2021.07.07.451453] [5]
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Actin gels
Temporal integrator

We use a time splitting approach:
@ Turnover filaments over time At (rarely happens).
@ Update cross linkers over time At.

@ Calculate (D) (X) and solve
X
gt = M (X) [ (X) + £ (X) + A
and update X over time At.
@ Translational and rotational diffusion of rigid filaments over time
At (sometimes).

"Interplay between Brownian motion and cross-linking kinetics controls bundling
dynamics in actin networks” by O. Maxian et al, in press Biophysical J., 2022
[bioRxiv:021.09.17.460819] [6]
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Actin gels
Dynamically cross-linked network
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Actin gels

Rheology transient CLs

2
10 —— Meshwork
0.13w (viscous) —F—B-In-M

e

0.30w (more viscous)

IS

IS}

-
=
—
—
—

G'(intra-fiber) /G’ (full hydro)

4
%

—8—G’, meshwork - G”, meshwork
-G/, BIn-M e G, B-In-M

<
5
>

107! 10° 10! 10 10° 10!
w (Hz) w (Hz)

@ Measured viscoelastic moduli of dynamically cross-linked networks
without Brownian motion.

@ For bundled networks, elastic modulus overestimated by ~ 50%
without inter-fiber hydro, esp. long timescales.

@ Fibers in bundles closer together: stress is reduced because
entrainment flows in bundle make straining easier.
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Adding Brownian motion

Outline

© Adding Brownian motion
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Adding Brownian motion

Thermal fluctuations (Brownian Motion)

e Rigid fibers are “easy” [7] though so far we have only implemented
without inter-fiber hydro [6].

@ Fluctuating hydrodynamics gives the fluctuating Stokes equations

pOv + V1 =nV3v + V- (\/277/(5 TW)

L
+/0 ds f(s, t)da (X(s,t) —r).

@ The thermal fluctuations (Brownian motion of fiber) are driven by a
white-noise stochastic stress tensor W (r, t).
@ Must first answer deep mathematical questions:

o Can one make sense of the (multiplicative noise) overdamped SPDE
for a Brownian curve?

e Does the Brownian stress of the fiber converge in the continuum
limit? (bending energy does not)
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Adding Brownian motion
Brownian multiblob chains

For Brownian blob-link chains there are no mathematical issues so start
there!

Fast constrained BD-HI for blob-link chains based on rotating unit link
vectors including Brownian stress (Brennan Sprinkle, in progress)
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Adding Brownian motion
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