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Motivation

Fibers involved in cell mechanics

Pawlizak and Käs, University of Leipzig

Lp =persistence length, L =fiber length, a = εL =fiber radius,
ε =slenderness ratio
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Motivation

Cytoskeleton rheology

Ahmed and Betz. PNAS. (2015)
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Motivation

Cross-linked actin gels

Very slender semi-flexible fibers (aspect ratio 102 − 104) suspended
in a viscous solvent.

For now cross linkers modeled as simple elastic springs.

Periodic cyclically sheared unit cell: viscoelastic moduli.
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Motivation

Does nonlocal hydrodynamics matter?

Monteith et al. Biophysics Journal. (2016)
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Motivation

Does nonlocal hydrodynamics matter?

Sometimes flows created by individual fibers add up constructively to
produce large-scale flows, which advect network.

For example, cytoplasmic streaming on previous slide or contraction
of a myosin-actin gel (must expel liquid out).

Flow is generated at scales of fiber thickness: multiscale problem.

Role of long-ranged (nonlocal) hydrodynamics unclear for
rheology of cross-linked actin gels.

For background consult:
Dynamics of Flexible Fibers in Viscous Flows and Fluids, Annual
Review of Fluid Mechanics 51:539, Olivia du Roure, Anke Lindner,
Ehssan N. Nazockdast, and Michael J. Shelley
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Fibers in Stokes flow

Fiber Representation

Simple approach is to represent a fiber as a discrete chain of
beads/blobs: multiblob model

More efficient approach is to represent a fibers as continuum curve
O. Maxian, A. Mogilner and A. Donev, ArXiv:2007.11728
An integral-based spectral method for inextensible slender fibers in Stokes
flow [1]
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Fibers in Stokes flow

Inextensible multiblob chains

Worm-like polymer chain

Inextensibility:‖Xj+1 − Xj‖ = l ∼ a
(e.g., a or 2a).

Tangent vectors:
τj+1/2 = (Xj+1 − Xj) /l

Bending angles:
cosαj = τj+1/2 · τj−1/2

Elastic energy (bending modulus κb)

Eb =
2κb

l

N−1∑
j=1

sin2
(αj

2

)

A. Donev (CIMS) Fibers 10/2020 11 / 49



Fibers in Stokes flow

Inextensible continuum fibers

Persistence length due to thermal fluctuations ξ = 2κb/ (kBT )� l
gives us a continuum limit, αj � 1.

Fiber centerline X (s) where the arc length 0 ≤ s ≤ L.

The tangent vector is τ = ∂X/∂s = Xs , and the fibers are
inextensible,

τ (s, t) · τ (s, t) = 1 ∀(s, t).

Bending energy functional is integral of inverse curvature squared:

Eb (X) =
2κb

l

N−1∑
j=1

(αj

2

)2
⇒ Eb [X (·)] =

κb
2

∫
ds ‖Xss (s)‖2
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Fibers in Stokes flow

Bending elasticity

Bending force F
(b)
j on each blob j in the interior gives us elastic force

density fb(s, t)

F
(b)
j = −∂Eb

∂Xj
=
κb
l3

(−Xj−2 + 4Xj−1 − 6Xj + 4Xj+1 − Xj+2)

Fb ≈ −lκb D4X ⇒ fb = −δEbend

δX
= −κbXssss

Endpoints naturally handled discretely, giving in continuum natural
BCs for free fibers:

Xss (0/L) = 0, Xsss (0/L) = 0.

Tensions Tj+1/2 → T (s) are unknown and resist stretching,

Λi = Ti+1/2τi+1/2 − Ti−1/2τi−1/2 ⇒ λ = (Tτ )s .
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Fibers in Stokes flow

Fluid dynamics

For multiblob chains in Stokes flow, fluid velocity v (r, t) satisfies
∇ · v = 0 and

∇π = η∇2v +
∑
j

Fj δa (Xj − r),

where δa is a regularized delta/blob function whose width is
proportional to a, and

F = −lκb D4X + Λ
Blobs/fiber are advected by fluid

Uj = dXj/dt =

∫
dr v (r, t) δa (Xj − r) .

Continuum limit is obvious

∇π (r, t) =η∇2v (r, t) +

∫ L

0
ds f(s, t)δa (X(s, t)− r)

U (s, t) = ∂tX (s, t) =

∫
dr v (r, t) δa (X(s, t)− r)

f = −κbXssss + λ
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Fibers in Stokes flow

Multiblob chains in Stokes flow

We can (temporarily) eliminate the fluid velocity to write an equation
for fiber only.

Define the positive semi-definite hydrodynamic kernel

R (r1, r2) =

∫
δa
(
r1 − r′

)
G
(
r′, r′′

)
δa
(
r2 − r′′

)
dr′dr′′,

where G is the Green’s function for (periodic) Stokes flow.

Define M (X) � 0 to be the symmetric positive semidefinite (SPD)
mobility matrix with blocks

Mij (Xi ,Xj) = R (Xi ,Xj) = R (Xi − Xj) .

Discrete dynamics = inextensibility +

U = dX/dt = M (X) F (X) = M
(
−lκb D4X + Λ

)
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Fibers in Stokes flow

Inextensible fibers in Stokes flow

Define a positive semidefinite mobility operator

(M [X (·)] f (·)) (s) =

∫ L

0
ds ′ R

(
X(s),X(s ′)

)
f(s ′)

Continuum dynamics is a non-local PDE

U = Xt = M [X] (−κbXssss + λ)

τ (s, t) · τ (s, t) = 1 ∀(s, t).

Is this PDE well-posed (weak, strong)? Since λ only appears inside
spatial integrals, this is a sort of first-kind integral equation.

Recent work by Ohm and Mori defines a “slender-body PDE” that is
probably well-posed (not proven yet for inextensible fibers or for
cylindrical fibers with free ends) but too difficult for computation.

A. Donev (CIMS) Fibers 10/2020 16 / 49



Fibers in Stokes flow

Rotne-Prager-Yamakawa kernel

R (r1, r2) =

∫
δa
(
r1 − r′

)
G
(
r′, r′′

)
δa
(
r2 − r′′

)
dr′dr′′

Taking the regularization kernel and unbounded Stokes flow

δa (r) =
(
4πa2

)−1
δ (r − a)

gives the Rotne-Prager-Yamakawa (RPY) kernel

R (r) =


(8πη)−1

(
S (r) +

2a2

3
D (r)

)
, r > 2a

(6πaη)−1

[(
1− 9r

32a

)
I +

(
3r

32a

)
r ⊗ r

r 2

]
, r ≤ 2a

S (r) =
1

8πηr

(
I + r̂r̂T

)
≡ G, and D (r) =

1

8πηr 3

(
I− r̂r̂T

)
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Fibers in Stokes flow

Matched asymptotics

(M [X (·)] f (·)) (s) =

∫ L

0
ds ′ R

(
X(s)− X(s ′)

)
f(s ′)

Matched asymptotics gives (away from endpoints)

(M f) (s) ≈ (MSBT f) (s) = (Mloc f) (s) + (MFP f) (s) =

=
1

8πµ

(
log

(
(L− s)s

4a2

)(
I + τ (s)τ (s)T

)
+ 4I

)
f(s)

+
1

8πµ

∫ L

0
ds ′
(
S
(
X(s)− X(s ′)

)
f
(
s ′
)
−
(

I + τ (s)τ (s)T

|s − s ′|

)
f(s)

)
For a special choice of blob radius a =

(
e3/2/4

)
εL = 1.12εL, this

formula matches the widely-used Slender Body Theory (SBT).

Our approach automatically works for multiple fibers, and also gives
us a natural regularization of the endpoints (not shown).
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Fibers in Stokes flow

Slender body theory

M = Mloc + MFP = O
(

log

(
(L− s)s

a2

))
+O(1)

SBT is great for numerics since it involves quadratures that can be
computed accurately for smooth f to spectral accuracy.

Problem 1: The local drag term is logarithmically singular at
endpoints for cylindrical fibers.
Many use (unphysical) ellipsoidal fibers: Mloc = O (log (L/a)).

Problem 2: The finite-part mobility MFP has spurious negative
eigenvalues for high spatial frequencies, so MSBT is not SPD, and
equations are definitely not well posed.
Previous works starting with Tornberg+Shelley [2] use artificial
regularization of the integrand in MFP.
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Fibers in Stokes flow

Limitations of slender body theory

Problem 1 compounds problem 2, and for fibers of slenderness
ε ∼ 10−2 all of SBT seems to break down.

Problem 2 solution: One can avoid matched asymptotics entirely by
constructing special quadrature methods for the RPY kernel (using
ideas of af Klinteberg, Barnett, Tornberg).

Problem 1 temporary “solution”:
Make fibers tapered near the endpoints (δ ∼ 0.05− 0.1� ε)
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Fibers in Stokes flow

Regularization of end points

(Mloc f) (s) ∼ c(s)
(
I + τ (s)τ (s)T

)
f(s), where c(s) ∼ log

(
(L− s)s

a(s)2

)
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0.95

1

Note: For ellipsoidal fibers c(s) is constant (= 1 in this plot).

A. Donev (CIMS) Fibers 10/2020 21 / 49



Fibers in Stokes flow

Cylindrical fibers
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Velocity at t = 0 for fiber with ε = 10−3 relaxing due to bending elasticity.
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Fibers in Stokes flow

Cylindrical endpoints
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Lack of smoothness in the solution near the endpoints – our endpoint
regularization removes that problem.
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Inextensibility

Tension equation

Xt = M [X] (−κbXssss + λ) and λ = (Tτ )s

Traditional approach (Tornberg+Shelley) is to solve tension equation

τ · τ = Xs · Xs = 1 ⇒ (Xt)s · Xs = 0 non-local BVP

Tension equation is linear in T (s) but very nonlinear in X and its
derivatives, causing aliasing issues.

Method does not strictly enforce inextensibility numerically, requiring
adding a penalty for stretching.

To solve these problems, let us first go back to multiblobs for
simplicity, and then take continuum limits.
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Inextensibility

Inextensible motions

Ui −Ui−1

∆s
= Ωj+1/2 × τj+1/2 ⇒

U = KΩ⊥ =

U0, · · · ,U0 + ∆s
i−1∑
j=0

Ω⊥j+1/2 × τj+1/2, · · ·

→
(
K [X (·)] Ω⊥ (·)

)
(s) = U (s) = U (0) +

∫ s

0
ds ′
(
Ω⊥

(
s ′
)
× τ

(
s ′
))
.
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Inextensibility

Principle of virtual work

Principle of virtual work: Constraint forces should do no work for
any inextensible motion of the fiber:

ΛTU =
(
KTΛ

)T
Ω⊥ = 0 ∀Ω⊥ ⇒ KTΛ = 0

KTΛ =

 N∑
j=0

Λj , · · · ,∆s

 N∑
j=i

Λj

× τi+1/2, · · ·

→
(K? [X (·)]λ (·))(s) =

[∫ L

0
ds ′ λ

(
s ′
)
,

(∫ L

s
ds ′ λ

(
s ′
))
× τ (s)

]
= 0∀s.

We can express this in terms of tension

∀s

∫ L

s
ds ′ λ

(
s ′
)

= −T (s)τ (s) ⇒ λ = (Tτ )s

but the principle of virtual work is an integral constraint rather than
a pointwise constraint.
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Inextensibility

Continuum equations

New weak formulation of inextensibility constraint:

Xt = K [X] Ω⊥= M [X] (−κbXssss + λ)

K? [X]λ= 0

∂tτ = Ω⊥ × τ

X(s, t) = X(0, t) +

∫ s

0
ds ′ τ

(
ds ′, t

)
Two improvements:

Evolve tangent vector τ rather than X: strictly inextensible.
Impose tension equation weakly rather than pointwise.
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Numerical Methods
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Numerical Methods

Chebyshev discretization

Choose normal vectors n1/2 ⊥ τ (arbitrary):

∂tτ = Ω⊥ × τ = g1(s)n1(s) + g2(s)n2(s)

Expand all functions into a truncated Chebyshev series on a grid of
N nodes using Tk(s) as a basis for L2:

g1(s) =
N−1∑
j=0

α1jTj(s) kinematic vars α = {U(0), α1j , α2j}

Simple change of integration vars gives

U = K [X]α = U(0)+
N−1∑
j=0

∫ s

0
ds ′
(
α1jTj(s ′)n1(s ′) + α2jTj(s ′)n2(s ′)

)
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Numerical Methods

Chebyshev discretization contd.

Principle of virtual work says ∀j

K? [X]λ =

( ∫ L
0 λ(s) ds∫ L

0 ds λ(s) ·
∫ s

0 ds ′ Tj(s ′)n1/2(s ′)

)
:= 0

Collocation discretization of mobility equation gives a saddle point
system for λ and α,(

−M(X) K(X)

K∗(X) 0

)(
λ

α

)
=

(
M(X)(−κbD4

BCX)

0

)
but should try Galerkin in the future.

Bending elasticity+BCs discretized using rectangular collocation
Driscoll and Hale. IMA J. Numer. Anal. (2016).
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Numerical Methods

Temporal discretization

Use multistep extrapolation for nonlinear terms:

Xn+1/2,p =
3

2
Xn − 1

2
Xn−1

λn+1/2,p = 2λn−1/2 − λn−3/2.

Split mobility into local and non-local parts, M = ML + MNL:

Kn+1/2,pαn+1/2 =M
n+1/2,p
L

(
−κb

2
D4

BC

(
Xn + Xn+1,?

)
+ λn+1/2

)
+M

n+1/2,p
NL

(
−κbD4

BCXn+1/2,p + λn+1/2,p
)

(K?)n+1/2,p λn+1/2 =0,

where Xn+1,? = Xn + ∆tKn+1/2,∗αn+1/2.

Actual fiber update is strictly inextensible

τ n+1 = rotate
(
τ n,∆tΩn+1/2,p

)
.
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Numerical Methods

The gory details

1 For dense suspensions, supplement 2nd order temporal method with
additional 1-5 GMRES iterations for stability.

2 Evaluate long-ranged hydrodynamic interactions between Chebyshev
nodes in linear time using Positively Split Ewald (PSE) method
(FFT based for triply periodic), also works for deformed/sheared
unit cell (Fiore et al. J. Chem. Phys. (2017) [3]).
Future work: Ewald methods with other BCs.

3 For nearby fibers, use specialized near-singular quadrature (af

Klinteberg and Barnett. BIT Num. Math. 2020 [4]) to get 2-3 digits.

4 For finite-part self interaction of one fiber with itself use specialized
quadrature with singularity-removal by Anna Karin-Tornberg.
Future work: Develop fast accurate quadratures for RPY kernel to
avoid matched asymptotics (SBT).
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Actin gels

Actin network/gel
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Actin gels

Cross Linkers

Cross linker (CL) between X(i)(s∗i ) and X(j)(s∗j ), with

R =
∥∥∥X(i)(s∗i )− X(j)(s∗j )

∥∥∥
Model cross-linker as just a spring with Gaussian smoothing to
preserve spectral accuracy (std= σ ∼ 0.1L):

f(CL,i)(s) = −Kc

(
1− `

R

)
δσ(s − s∗i )

∫ L

0

ds ′
(

X(i) (s)− X(j)(s ′)
)
δσ(s ′ − s∗j )

Cross linker is force and torque-free.

Randomly generated dense network of CLs (16 attachment sites per
site) to give about 12 CLs per fiber (elastic network).

Future work: Allow for dynamic binding/unbinding of CLs, reduce
smoothing σ, treat CL elasticity implicitly.
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Actin gels

Cross-linked network
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Actin gels

Rheology

Apply linear shear flow v0(x , y , z) = γ̇0 cos(ωt)y and measure the
visco-elastic stress induced by the fibers and cross links:

σ(i) =
1

V

∑
fibers

∫ L

0
ds Xi (s) (fb(s) + λ(s))T

σ(CL) =
1

V

∑
CLs=(i ,j)

∫ L

0
ds
(

Xi (s)f(CL,i)(s) + Xj(s)f(CL,j)(s)
)

σ21

γ0
= G ′ sin(ωt) + G ′′ cos(ωt) = elastic+viscous.

G ′ =
2

γ0T

∫ T

0
σ21 sin(ωt) dt G ′′ =

2

γ0T

∫ T

0
σ21 cos(ωt) dt.
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Actin gels

Viscoelastic moduli
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Elastic modulus G ′ and viscous modulus G ′′ for 700 fibers + 8400 CLs
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Actin gels

Nonlocal hydrodynamics
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Reduction in viscoelastic moduli with only local drag or
only inter-fiber nonlocal hydrodynamics.
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Actin gels

Rheology summary

Network relaxation time τc ≈ 0.5− 1s

For ω−1 � τc
Quasi-steady; elastic solid
Small effect of nonlocal hydrodynamics (∼ 10%)

For ω−1 ≈ τc .

G ′′ ≈ G
Max change in G ′ due to inter-fiber hydro

For ω−1 � τc .

Fibers and CLs “frozen”; network behaves like a viscous fluid
G ′′ � G ′; up to 25% change due to intra-fiber hydro.
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Future Challenges

Outline

1 Motivation

2 Fibers in Stokes flow

3 Inextensibility

4 Numerical Methods

5 Actin gels

6 Future Challenges
Adding twist
Adding Brownian motion

A. Donev (CIMS) Fibers 10/2020 42 / 49



Future Challenges Adding twist

Twist

For given force densities f(s, t) and parallel torque densities m(s, t)
along the fiber centerlines,

∇π = η∇2v +

∫ L

0
ds

[
f(s) + m(s)τ (s)

∇
2
×
]
δa (X(s)− r),

Ω‖(s) = τ (s) ·
∫

dr
∇
2
× v (r, t) δa (X(s)− r)

Open question: Should fiber exert perpendicular torques on the
fluid (and vice versa)?

Previous work using multiblob-type methods makes m a 3D vector
(Peskin, Lim, Olson, Keaveny) and uses Kirchhoff rod theory (triad
based) but we use scalar twist angle (inspired by work in group of
Jorn Dunkel).
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Future Challenges Adding twist

Bishop frame

To each point along the fiber we attach an orthonormal triad
B(s) = [τ (s), a(s),b(s)] called the Bishop frame, which satisfies the
no-twist condition:

as · b = 0 ⇒ ∂sa = (τ × τs)× a

Represent the twist of the i-th fiber by the angle θ(s) between the
material frame of the cross section of the fiber and the Bishop cross
section.

f = −κbXssss + κt (θs (τ × τs))s + λ,

m = κT θss

Bishop frame evolves even if Ω‖ = 0,

∂tθ (s, t) = ∂tθ(s = 0, t) +

∫ s

0
ds ′Ωs

(
s ′, t

)
· τ
(
s ′, t

)
.
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Future Challenges Adding twist

Why twist is hard

Can we solve Bishop frame ODE efficiently with spectral methods?

Temporal integration is challenging because of extreme stiffness:
twist relaxation much faster than bend relaxation.
Maybe twist is always in quasi-equilibrium?

When does twist matter?
Flagella, formins twisting growing actin filaments, macroscopic
chirality in cells, and ?
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Future Challenges Adding Brownian motion

Thermal fluctuations (Brownian Motion)

Fluctuating hydrodynamics gives the fluctuating Stokes equations

ρ∂tv + ∇π =η∇2v + ∇ ·
(√

2ηkBT W
)

+

∫ L

0
ds f(s, t)δa (X(s, t)− r) .

The thermal fluctuations (Brownian motion of fiber) are driven by a
white-noise stochastic stress tensor W (r, t).

Open mathematical question:

What is the overdamped limit η/ρ→∞ (steady Stokes)?
Can one even write a multiplicative noise SPDE for the fiber motion
that makes mathematical sense?
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Future Challenges Adding Brownian motion

Brownian multiblob chains

For Brownian multiblob chains there are no mathematical issues so start
there!
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Future Challenges Adding Brownian motion

Multiblob chains: Linear Algebra

Since multiblobs have lots of DOFs per fiber, LA matters

GMRES convergence for implicit solver for a curved fiber, using local-drag
SBT as a preconditioner (from B. Sprinkle).
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Future Challenges Adding Brownian motion
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