Brenden Lake

Moore-Sloan Data Science Fellow
Center for Data Science
New York University

Contact:

  • Email: brenden@nyu.edu
  • Office: 726 Broadway, Room 783, New York, NY 10003

Research:

I build computational models of our everyday cognitive abilities, focusing on problems that are easier for people than they are for machines. The human mind is the best known solution to a diverse array of difficult computational problems that people seem to solve every day: concept learning, object recognition, scene understanding, language acquisition, speech recognition, amongst many others. Machines also struggle to simulate other facets of human intelligence, including creativity, general purpose problem solving, and commonsense reasoning.

In this broad space of computational challenges, my work has touched on questions such as: How do people learn a new concept from just one or a few examples? How do people learn qualitatively different forms of structure? And how do people act creatively when designing a new concept? By attempting to reverse engineer the human solutions to everyday computational problems, I aim to both better understand humans and build a more human-like learning capacity in machines.

Education:

Publications:

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman, S. J. (2016). Building machines that learn and think like people. Preprint available on arXiv:1604.00289.

Rothe, A., Lake, B. M., and Gureckis, T. M. (2016). Asking and evaluating natural language questions. In Proceedings of the 38th Annual Conference of the Cognitive Science Society.

Cohen, A. and Lake, B. M. (2016). Searching large hypothesis spaces by asking questions. In Proceedings of the 38th Annual Conference of the Cognitive Science Society.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. Science, 350(6266), 1332-1338. [Supporting Info.] [visual Turing tests] [Omniglot data set] [Bayesian Program Learning code]

Monfort, M., Lake, B. M., Ziebart, B. D., Lucey, P., and Tenenbaum, J. B. (2015). Softstar: Heuristic-Guided Probabilistic Inference. Advances in Neural Information Processing Systems 28. [Supporting Info.]

Lake, B. M., Zaremba, W., Fergus, R. and Gureckis, T. M. (2015). Deep Neural Networks Predict Category Typicality Ratings for Images. In Proceedings of the 37th Annual Conference of the Cognitive Science Society. [Data]

Lake, B. M. (2014). Towards more human-like concept learning in machines: Compositionality, causality, and learning-to-learn. Ph.D. thesis, MIT.

Lake, B. M., Lee, C.-y., Glass, J. R., and Tenenbaum, J. B. (2014). One-shot learning of generative speech concepts. In Proceedings of the 36th Annual Conference of the Cognitive Science Society. [Supporting Info.]

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2013). One-Shot Learning by Inverting a Compositional Causal Process. Advances in Neural Information Processing Systems 26. [Supporting Info.]

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2012). Concept learning as motor program induction: A large-scale empirical study. In Proceedings of the 34th Annual Conference of the Cognitive Science Society. [Supporting Info.]

Lake, B. M., Salakhutdinov, R., Gross, J., and Tenenbaum, J. B. (2011). One shot learning of simple visual concepts. In Proceedings of the 33rd Annual Conference of the Cognitive Science Society. [Videos]

Lake, B. M. and McClelland, J. L. (2011). Estimating the strength of unlabeled information during semi-supervised learning. In Proceedings of the 33rd Annual Conference of the Cognitive Science Society.

Lake, B. M. and Tenenbaum, J. B. (2010). Discovering Structure by Learning Sparse Graphs. In Proceedings of the 32nd Annual Conference of the Cognitive Science Society.

Lake, B. M. (2009). Unsupervised and semi-supervised perceptual category learning. Master's thesis, Stanford University.

Lake, B. M., Vallabha, G. K., and McClelland, J. L. (2009). Modeling unsupervised perceptual category learning. IEEE Transactions on Autonomous Mental Development, 1(1), 35-43.

Lake, B. M., Vallabha, G. K., and McClelland, J. L. (2008). Modeling unsupervised perceptual category learning. In Proceedings of the 7th International Conference on Development and Learning. Best paper award. Expanded version directly above.

Lake, B. M. and Cottrell, G.W. (2005). Age of acquisition in facial identification: A connectionist approach. In Proceedings of the 27th Annual Conference of the Cognitive Science Society.


Other:
Cognitive ToyBox