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CHAPTER 1

Introduction

I am going to adopt the view that the main purpose of ergodic theory is
to study statistical patterns in deterministic or random dynamical systems
and, specifically, how these patterns depend on the initial state of the system.
Let me first try to explain this without going to technical details.

Suppose that we have a system X evolving in a phase space X. This
means that at each time t the state of the system denoted by Xt belongs
to X. The system may be rather complex, e.g., X can be a turbulent flow of
particles in a fluid or gas and at any given time the description of the state
of the flow should involve positions and velocities of all these particles. All
these details of the flow at any given time have to be encoded as an element
of X.

Studying such a system experimentally may be a difficult task because
if the behavior of the system is rich, then tracking all the details of the
evolution may be hard or impossible. In many cases predicting the trajectory
of such a system may be problematic as well, sometimes due to analytic or
computational difficulties, sometimes due to intrinsic randomness or lack of
stability in the system and due to its sensitivity to the initial data.

However, one may try a statistical approach to describing the properties
of the system. Although concrete realizations (Xt)t≥0 of the system may
be erratic, it is still possible that these realizations follow steady statistical
patterns.

A usual approach to experimental analysis of the system is to collect
statistical information about the system by making repeated observations
or measurements. From the mathematical point of view, a measurement
is a way to assign to any state x ∈ X a number f(x). In other words, it
is a function f : X → R. In particular, a measurement f of system X
at time t, produces a number f(Xt). One such measurement hardly tells
much about the system, so a natural way to proceed is to conduct the
same measurement at different times and find the average of the obtained
values. If the measurements are made at times 1, 2, . . . , then the result of
this procedure is

f(X1) + . . . + f(Xn)

n
.

The hope is that these time-averaged measurements can serve as approxima-
tions to a “true” value one is trying to estimate. Moreover, one hopes that
the more observations we average, the closer the resulting estimate is to the
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6 1. INTRODUCTION

ideal true value. In other words, collecting more and more statistics is useful
only if a version of the law of large numbers holds, namely, that there is a

number f̄ such that f(X1)+...+f(Xn)
n → f̄ as n → ∞. Moreover, that infinite

time horizon average should be independent of the specific initial state of
the system or at least be stable with respect to a class of perturbations of
the initial state. Otherwise it is hard to assign a meaning to this limiting
value. So, some questions that naturally arise are: Does the system possess
any statistical regularity, i.e., does it make sense to collect statistics about
the system? How do the statistical properties of the system depend on the
initial condition? Does the system tend to remember the initial condition or
does it forget it in the long run? What is remembered and what is forgotten
in the long run?

One way to look at these issues is the stability point of view. I would
like to illustrate that with a couple of standard mathematical examples.

The first very simple example is a deterministic linear dynamical system
with one stable fixed point. A discrete dynamical system is given by a
transformation θ of a phase space X. For our example, we take the phase
space X to be the real line R and define the transformation θ by θ(x) = ax,
x ∈ R, where a is a real number between 0 and 1. To any point x ∈ X one
can associate its forward orbit (Xn)∞n=0, a sequence of points obtained from
X0 = x by iterations of the map θ, i.e., Xn = θ(Xn−1) for all n ∈ N:

X0 = x = θ0(x)

X1 = θ(X0) = θ(x) = θ1(x),

X2 = θ(X1) = θ ◦ θ(x) = θ2(x),

X3 = θ(X2) = θ ◦ θ ◦ θ(x) = θ3(x),

. . . .

We are interested in the behavior of the forward orbit (Xn)∞n=0 of x as
n → ∞, where n plays the role of time. In this simple example, the analysis is
straightforward. Namely, zero is a unique fixed point of the transformation:
θ(0) = 0, and since Xn = anx, n ∈ N and a ∈ (0, 1) we conclude that as
n → ∞, Xn converges to that fixed point exponentially fast. Therefore, 0 is
a stable fixed point, or a one-point global attractor for the dynamical system
defined by θ, i.e., its domain of attraction coincides with R. So, due to the
contraction and intrinsic stability that is present in the map θ, there is a
fast loss of memory in the system, and no matter what the initial condition
is, it gets forgotten in the long run and the points Xn = θn(x) approach the
stable fixed point 0 as n → ∞.

A completely different example is the following: let X = [0, 1) and let θ
be defined by θ(x) = {2x}. This system exhibits no stability at all. To see
that, it is convenient to look at this system using binary representations of
numbers in [0, 1): for each x ∈ [0, 1) there is a sequence (xi)

∞
i=1 of numbers
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xi ∈ {0, 1} such that x = 0.x1x2x3 . . . in binary notation, i.e.,

x =
∞�

i=1

xi
2i
.

This representation is unique for all x except dyadic numbers. These are
numbers with only finitely many 1’s in their binary representation. Each
dyadic number x allows for one more representation:

0.x1x2x3 . . . xm−110000 . . . = 0.x1x2x3 . . . xm−101111 . . .,

so to preserve the uniqueness of binary representations, let us agree that
representations ending with 1111 . . . are not allowed.

The transformation θ acts on binary representations as a shift:

θ(0.x1x2x3 . . .) = 0.x2x3x4 . . ..

Therefore,
θn(0.x1x2x3 . . .) = 0.x1+nx2+nx3+n . . ..

To see that there is no stability in this system, let us start with any point
x = 0.x1x2x3 . . . ∈ [0, 1). Let us now take another point y = 0.y1y2y3 . . . ∈
[0, 1). If yn �= xn for infinitely many values of n, then for those values of n,
the iterates of θn(x) and θn(y) will not be close, one belonging to [0, 1/2)
and another to [1/2, 1).

We see that stability at the level of trajectories does not hold in the
usual sense. However, a statistical version of stability holds true. Namely,
one can prove that if f is an integrable Borel function on [0, 1), then for
almost every x ∈ [0, 1) with respect to the Lebesgue measure on [0, 1),

(1.1) lim
n→∞

f(x) + f(θ(x)) + f(θ2(x)) + . . . + f(θn−1(x))

n
=

�

[0,1)
f(x)dx.

Since the right-hand side represents the average of f with respect to the
Lebesgue measure on [0, 1), one can say that, in the long run, statistical
properties of this dynamical system are described by the Lebesgue measure
or uniform distribution on [0, 1). In fact, one interpretation of identity (1.1)
is that for Lebesgue almost every initial condition x the empirical distribu-
tion or empirical measure generated by θ and assigning mass n−1 to each
point x, θ(x), . . . , θn−1(x) converges to the Lebesgue measure. Since the lim-
iting measure is the same for a broad class of initial conditions x, we can
speak of statistical stability: in the long run the initial value gets forgot-
ten in the statistical properties of the system. We also can interpret the
convergence in (1.1) as a law of large numbers.

We see that the Lebesgue measure plays a special role for this system
since it describes the limits in (1.1). The reason for this is, as we will see
is (a) that the Lebesgue measure is invariant under θ and (b) it is ergodic,
i.e., it is not decomposable into two nontrivial invariant measures.
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Similar questions are natural to ask if one considers random maps in-
stead of deterministic ones. One natural way the random maps emerge is
via random perturbations of deterministic dynamics. Let us describe one
example of this kind. It is a ‘noisy’ modification of our first example above.
Recall that in that example we worked with the map θ : x �→ θx, and 0 was
a stable equilibrium point. Let us perturb this dynamical system with noise,
i.e., a random perturbation that kick the system out of equilibrium. Sup-
pose we have a sequence (ξn)n∈Z of independent Gaussian random variables
with mean 0 and variance σ2 defined on some probability space (Ω,F, P).
For every n ∈ Z we will now define a random map θn,ω : R → R by

θn,ω(x) = ax + ξn(ω).

This model is known as an autoregressive-moving-average (ARMA) model
of order 1.

A natural analogue of a forward orbit from our first example would be
a stochastic process (Xn)n≥0 emitted from a point x0 ∈ R, i.e., satisfying
X0 = x and, for all n ∈ N,

(1.2) Xn = aXn−1 + ξn.

However, the stability issue it is not as straightforward here as in the de-
terministic case. It is clear that there is no fixed equilibrium point that
would serve all maps θn,ω at the same time. The solution of the equa-
tion θn,ω(y) = y for some n may be irrelevant for all other values of n.
Still this system allows for an ergodic result similar to (1.1). Let µ be the
Gaussian measure with mean 0 and variance σ2/(1 − a2). Then, for any
Borel function f integrable with respect to µ, we have that for almost every
(x0, ω) ∈ R × Ω with respect to µ × P,

lim
n→∞

f(X0) + f(X1) + f(X2) + . . . + f(Xn−1)

n
=

�

R
f(x)µ(dx).

The underlying reason for this result is that µ is a unique invariant distri-
bution for the Markov semigroup associated with the process. This example
demonstrates a situation where there is no stability in the straightforward
deterministic sense, but there is statistical stability.

Roughly speaking the ergodic approach to stochastic stability is to base
the study of the system on the description of the set of invariant distributions
and their properties, and so this is the main theme of these notes in the
context of random dynamics. Nevertheless, we will begin with the basics of
ergodic theory of deterministic transformations. The full tentative plan is
to study

(1) Generalities on ergodic theory of deterministic transformations.
(2) Generalities on ergodic theory of random transformations and Markov

processes.
(3) Finite and countable state space. Markov chains.
(4) Random dynamics in Euclidean spaces
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(5) Continuous time. SDEs.
(6) SPDEs: Stochastic Navier-Stokes, Burgers equations.
(7) Lyapunov exponents and multiplicative ergodic theory.

In the end of this introduction let us discuss the roots of ergodic theory
and the origin of the word ergodic. In the second half of the nineteenth cen-
tury, L. Boltzmann worked on foundations of statistical mechanics that was
supposed to connect the kinetic theory of gases with thermodynamics. The
main idea was that gases in equilibrium obey a distribution and all macro-
scopic quantities of interest can be derived from that distribution. Boltz-
mann introduced the notion of ensemble (that corresponds to Kolmogorov’s
notion of probability space) and, among other things, was concerned with
the connection with the frequentist notion of probability since computing
frequencies is a form of time averaging.

The systems of gas particles Boltzmann was considering preserve the
total energy. He called an energy-preserving system an Ergode if there were
no other conserved quantities, and he introduced the term Ergodentheorie
for the study of such systems. The greek root erg in both energy and ergode
relates to work or activity (ergon means work in ancient Greek). It takes
no external work to move between states with the same energy, and when
studying such systems Boltzmann was led to what may be called a weak form
of the ergodic hypothesis: that the path that the system follows explores all
available configurations of particles and their velocities with the same total
energy. (The Greek word for road or way is odos)

The stronger version of the ergodic hypothesis is usually formulated as
“time averages equal ensemble averages”, and can be understood as a form
of law of large numbers. So, if X1,X2, . . . are configurations that the system
evolves through and f is any observable, then

f(X1) + . . . + f(Xn)

n
→

�

X
f(x)P(dx),

where P is the equilibrium distribution, and the right-hand side plays the
role of the ensemble average. Of course, no rigorous measure and integra-
tion theory or probability theory existed at that time, so the mathematical
treatment of these issues had to wait until the 20th century.





CHAPTER 2

Measure-preserving transformations and other
basic notions of ergodic theory for deterministic

systems

This chapter is devoted to a very sketchy introduction to the ergodic
theory of deterministic measure-preserving transformations. Many more
topics are studied in introductory texts [Wal82], [Sin76]. A comprehensive
modern course on dynamical systems is [KH95].

1. Example: circle rotations

Let us start with an example of a simple dynamical system. Consider
a circle S1. It can be understood as the real line modulo 1: S1 = R1/Z1,
i.e., it is the result of identification of points on the the real line R1 with
common fractional part. It can also be parametrized by the segment [0, 1]
with identified endpoints.

A rotation of the circle is a transformation θ : S1 → S1 given by

(2.1) θ(ω) = ω + α (mod 1), ω ∈ S1,

where α is a real number. Let us look at what happens if we keep watching
the dynamics emerging under iterations of the map θ, i.e., the compositions
θ1 = θ, θ2 = θ ◦ θ, θ3 = θ ◦ θ ◦ θ, etc. The number of iterations plays the
role of time, and we are interested in statistical patterns in these iterations
over long time intervals.

If the rotation angle α is rational and can be represented as α = m/n
for some coprime numbers m, n ∈ N, then for all ω ∈ S, all the points
ω, θω, θ2ω, . . . , θn−1ω are distinct, but θnω = ω i.e., after n iterations of θ
the circle returns to its initial position and then the next n iterations
θnω, . . . , θ2n−1ω coincide with ω, θω . . . , θn−1ω, and then this repeats for
θ2nω, . . . , θ3n−1ω, and so on. In other words all points ω are periodic with
period n.

A more interesting situation occurs if α is irrational. Then there are
no periodic points and one can show that the orbit {ω, θω, θ2ω . . .} is dense
in S1, and, moreover the following equidistribution theorem established al-
most simultaneously by P. Bohl [Boh09], H. Weyl [Wey10], and W. Sier-
pinski [Sie10] (although I have not looked into these papers) holds:

11



12 2. MEASURE-PRESERVING TRANSFORMATIONS

Theorem 2.1. Let α be irrational. Then for any point ω ∈ S1, and any
interval I = (a, b) ⊂ S1,

(2.2) lim
n→∞

�n−1
j=0 1θnω∈I

n
= b − a.

The sum in the left-hand side computes the total number of visits of the
sequence (θjω)∞j=0 to I before time n, and the ratio computes the frequency
of those visits relative to the total time n. Notice that the limiting value on
the right-hand side equals to Leb(I), the Lebesgue measure of I. Also notice
that the Lebesgue measure plays a special role for this dynamical system,
namely it is invariant under rotation θ. It should be intuitively clear what
this means. First, imagine mass uniformly spread over the circle and then
rotate the circle. The distribution of mass in the circle after the rotation is
still uniform, so it coincides with the initial mass distribution.

We will see soon that the fact that the statistics of visits to intervals is
described in the long run by an invariant distribution is a general phenom-
enon explained by ergodic theorems. Here we note that it is easy to extend
this result to the following:

Theorem 2.2. Let α be irrational. Then for any point ω ∈ S1 and any
continuous function f : S1 → R,

(2.3) lim
n→∞

�n−1
j=0 f(θjω)

n
=

�

S1

f(x)dx.

Derivation of Theorem 2.2 from Theorem 2.1: Identity (2.2) is a
specific case of identity (2.3) for f = 1I. Given (2.2), we can use linearity
of sums and integrals to derive (2.3) for functions f representable as

f(ω) =
m�

k=1

ck1Ik(ω),

for some system of intervals Ik ⊂ S1, k = 1, . . . ,m. Suppose now f is
continuous. Therefore, it is uniformly continuous and for every ε > 0, we
can find a step function fε such that |f(ω)−fε(ω)| < ε for all ω ∈ S1. Then
�
�
�
�
�

�n−1
j=0 f(θjω)

n
−

�

S1

f(x)dx

�
�
�
�
�
≤

�
�
�
�
�

�n−1
j=0 fε(θ

jω)

n
−

�

S1

fε(x)dx

�
�
�
�
�

+ 2ε, n ∈ N,

so lim supn→∞ of the left-hand side does not exceed 2ε. Since ε > 0 is
arbitrary, we conclude that the limit of the left-hand side equals zero. �

Theorem 2.2 can be interpreted so that for every observable f from a
broad class of functions, the time averages approximate the space averages.

Of course, this property fails for rational values of α = m/n despite the
fact that the Lebesgue measure is still invariant. The reason is that in that
case, for any ω ∈ S1, the orbit (θjω)j≥0 explores only a very small part of
S1 — a finite set, in fact, — whereas the integral in the right-hand side
of (2.3) depends on the behavior of f on the entire S1. This also can be
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explained by saying that S1 is decomposable: one can split S1 into smaller
massive sets composed of periodic orbits such that the dynamical system
can be confined to any of these sets and studied independently on each of
them.

Moreover, due to this decomposability of the dynamics, the Lebesgue
measure is not a unique invariant measure. For example, we can choose
one periodic orbit (ω, θω, . . . , θn−1ω) and obtain an invariant measure by
assigning mass n−1 to each of its points:

µ =
1

n

n−1�

j=0

δθjω,

where δx denotes the Dirac measure concentrated at x, i.e., for any set A,

(2.4) δx(A) = 1x∈A.

Notice that this uniform distribution along the orbit of ω is not possible for
nonperiodic orbits.

We will see later that the Lebesgue measure can be decomposed into a
combination of these discrete invariant measures, i.e., can be represented as
their (continual) mixture.

Let us now introduce some rigorous definitions in a more abstract frame-
work.

2. Measure-preserving transformations. Formal definitions

Throughout these notes book we will use concepts from measure-theory
based probability theory introduced by A.Kolmogorov in 1930’s, see [Kol50].
For a comprehensive introduction to probability, we recommend the book
by A.Shiryaev [Shi96], although this is largely a question of habit and taste.
There are several good books that can serve this purpose equally well. For
example, a more recent textbook [KS07] contains a concise introduction to
the mathematical theory of probability and stochastic processes.

We will often work with measurable spaces (Ω,F), where Ω is any set
and F is a σ-algebra on Ω. If P is a probability measure on (Ω,F), the
triplet (Ω,F, P) is called a probability space.

The first two definitions below require only the measurable structure
and do not depend on measures.

Definition 2.1. Let (Ω,F) and (Ω̃, F̃) be two measurable spaces. A

map X : Ω → Ω̃ is called measurable with respect to (F, F̃) if for every

A ∈ F̃, we have X−1A = {ω : X(ω) ∈ A} ∈ F. Often, such a map is also

called Ω̃-valued random variable. In the case where (Ω̃, F̃) = (R, B(R)),
where B(R) denotes the Borel σ-algebra on R, X is simply called a random
variable.

A specific case of this definition is the following:
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Definition 2.2. Let (Ω,F) be a measurable space. A map or trans-
formation θ : Ω → Ω is called measurable if, for every A ∈ F, we have
θ−1A = {ω : θω ∈ A} ∈ F.

Here and often in these notes we follow the tradition to denote the value
assigned by the transformation θ to argument ω by θω.

A measurable transformation θ defines a semigroup of measurable trans-
formations (θn)n∈Z+. Here θn is inductively defined by θ0 = Id (identical

transformation, i.e., Id(ω) ≡ ω) and for n ≥ 1, θn = θ ◦ θn−1. If a trans-
formation is invertible, i.e., θ is a bijection of Ω onto itself, then θ−1 is
well-defined and in a similar way θ generates a group of transformations
(θn)n∈Z. Identity θm ◦ θn = θm+n is valid for all m, n ∈ Z+ in the case of
the semigroup and for all m, n ∈ Z in the case of the group.

Often in these notes we will omit the composition sign “◦” for brevity.
For example, this convention allows to rewrite the above group identity
written as θmθn = θm+n.

Definition 2.3. Let (Ω,F, P) be a probability space and (Ω̃, F̃) be a

measurable space. Let a map X : Ω → Ω̃ be (F, F̃)-measurable. The

pushforward of P under X is a measure on (Ω, F̃) denoted by Pθ−1 and
defined by

PX−1(A) = P(X−1A) = P{ω : X(ω) ∈ A}, A ∈ F.

Definition 2.4. Let (Ω,F, P) be a probability space and suppose trans-
formation θ : Ω → Ω be measurable. If the pushforward Pθ−1 coincides
with P, i.e.,

(2.5) P(θ−1A) = P(A), A ∈ F,

then we say that P is invariant under θ, or that θ preserves P, or that θ is
P-preserving.

It is important to notice that the definition of invariance is based on
pre-images under θ, and not forward images. The reason for that is that the
pushforwards of measures are defined in terms of pre-images and there is no
natural notion of pullbacks of measures.

Problem 2.1. Suppose transformation θ preserves a measure P. Prove
that for any n ∈ Z+, θ

n also preserves P. Suppose additionally that θ is
invertible and θ−1 is measurable. Prove that then a stronger statement holds:
for any n ∈ Z, θn also preserves P (in particular, θ−1 is P-preserving).

Let us consider some basic examples of probability spaces with measure-
preserving transformations.

Let Ω = {0, 1, . . . , n−1}, F = 2Ω (σ-algebra of all subsets of Ω), and let
P be the uniform distribution on Ω. Then a transformation θ is P-preserving
if and only if it is a permutation, i.e., a one-to-one map. For instance, the
cyclic map θω = ω + 1 (mod n) is P-preserving.
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Continuous analogues of this cyclic transformation are circle rotations
preserving the Lebesgue measure on S1 equipped with the Borel σ-algebra,
and, more generally, shifts on a d-dimensional torus Td = Rd/Zd given by

(2.6) θ(ω1, . . . , ωd) = (ω1 + α1 (mod 1), . . . , ωd + αd (mod 1)),

where α = (α1, . . . , αd) is a fixed vector in Rd.
One more class of examples transformations preserving the Lebesgue

measure is provided by interval exchange transformations. Suppose the
probability space is ([0, 1), B([0, 1)), Leb). Let us take m ∈ N and let inter-
vals Ik = [ak, bk), k = 1, . . . ,m, form a partitions of [0, 1), i.e., these intervals
are mutually disjoint and their union is [0, 1). Let I�k = [a�k, b

�
k), k = 1, . . . ,m,

form another partition such that b�k − a
�
k = bk − ak, k = 1, . . . ,m. Then one

can define a transformation θ of [0, 1) such that for each Ik it coincides with
a translation of Ik onto I�k. It is easy to see that thus defined transformation
preserves the Lebesgue measure.

It is often useful to check invariance in terms of test functions. From this
point on we will often denote expectation (integral) of a random variable X
defined on (Ω,F, P) by EX or EX(ω).

Lemma 2.1. A measurable map θ on a probability space (Ω,F, P) pre-
serves P if and only if for any bounded measurable function X : Ω → R,

(2.7) EX(ω) = EX(θω).

Proof: Definition 2.4 is equivalent to (2.7) for indicator functions X = 1A,
A ∈ F. So sufficiency of (2.7) is obvious. On the other hand, if (2.7) holds
for indicators, then it holds for simple functions (finite linear combinations of
indicators). Also, any bounded measurable function X can be approximated
by a simple one: for any ε > 0 there is a simple function Xε such that
|X(ω)−Xε(ω)| ≤ ε. Since (2.7) holds for Xε, we obtain |EX(ω)−EX(θω)| ≤
2ε. Since ε is arbitrary, (2.7) follows. �

Definition 2.5. A probability space (Ω,F, P) equipped with a measure-
preserving transformation θ is often called a metric dynamical system or a
measure-preserving dynamical system. Quadruplet notation (Ω,F, P, θ) is
often used.

3. Poincaré’s recurrence theorem

The first truly contentful result that we are going to prove is the following
recurrence theorem proved by H. Poincaré [Poi90], [Poi99].

Theorem 2.3. Suppose (Ω,F, P) is a probability space, and θ is a P-
preserving transformation of Ω. Then for any set A ∈ F we have P(T (A)) =
0, where T (A) is set of all points in A that never return to A under iterations
of θ, i.e.,

T (A) = {ω ∈ A : θnω /∈ A, n ∈ N}.



16 2. MEASURE-PRESERVING TRANSFORMATIONS

Proof: Let us prove first that the sets θ−nT(A), n ∈ N are mutually
disjoint. In fact, if ω ∈ θ−nT(A) ∩ θ−mT(A) and m < n, then we denote
ω� = θmω and notice that ω� ∈ T(A), and at the same time θn−mω� =
θn−mθmω = ω ∈ T(A) which is a contradiction with the definition of T (A).

Due to θ-invariance of P, P(θ−nT(A)) = P(T(A)) for all n, so

�

n∈N

P(T(A)) =
�

n∈N

P(θ−nT(A)) = P

�
�

n∈N

θ−nT(A)

�

≤ P(Ω),

which can hold true only if P(T (A)) = 0. �

It is possible to give a quantitative strengthening of this theorem. The
following is an adaptation from [Tao08].

Theorem 2.4. Under the conditions of Theorem 2.3,

lim sup
n→∞

P(θ−nA ∩ A) ≥ P2(A), A ∈ F.

Proof: The invariance of P implies that for any N ∈ N,

E

�
N�

n=1

1θ−nA

�

= NP(A).

Using the Cauchy–Schwartz inequality or Lyapunov inequality, we obtain

(2.8) E

�
N�

n=1

1θ−nA

�2

≥

�

E

�
N�

n=1

1θ−nA

��2

= N2P(A)2.

The left-hand side of this inequality can be rewritten as

(2.9) E

�
N�

n=1

1θ−nA

�2

=
N�

n,m=1

P(θ−nA ∩ θ−mA) =
N�

n,m=1

P(A ∩ θ−|m−n|A).

Introducing L = lim supn→∞ P(A ∩ θ−nA), for any ε > 0, we can find
n0 = n0(ε) such that

P(A ∩ θ−nA) < L + ε, n > n0.

Let us now split the sum on the right-hand side of (2.9) into two: over n,m
satisfying |n−m| ≥ n0 and over n,m satisfying |n−m| < n0. Noticing that
there are less than 2n0N terms in the second sum and they all are bounded
by 1, we obtain

1

N2

N�

n,m=1

P(A ∩ θ−|m−n|A) < L + ε +
2n0(ε)N

N2
.

Combining this with (2.8) and (2.9), we obtain

P(A)2 ≤ L + ε +
2n0(ε)

N
.

Taking N → ∞ and then ε → 0, we obtain the desired result. �
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Problem 2.2. Using an approriate Bernoulli shift, prove that the lower
bound in Theorem 2.4 is sharp, i.e., in general P2(A) cannot be replaced by
a larger value. at this point the

Bernoulli shift
has not been
introduced yet

Theorem 2.4 implies that for any set A of positive measure (no matter
how small) there are infinitely many times n such that P(θ−nA ∩ A) > 0.
In particular, Theorem 2.3 can be viewed as a corollary of Theorem 2.4.

Derivation of Theorem 2.3 from Theorem 2.4: Let us assume that
P(T (A)) > 0. Then Theorem 2.4 implies that P(θ−nT(A)∩T(A)) is positive
for infinitely many n ∈ N. For those n, there is ω ∈ θ−nT(A) ∩ T(A) ⊂
θ−nA ∩ A. So, ω ∈ T(A), but θnω ∈ A. This contradicts the definition of
T (A). �

There is an interesting Zermelo’s paradox related to Poincaré’s recur-
rence theorem. Consider a gas, i.e., a collection of particles in a box. The
evolution of this system of particles can be described by a Hamiltonian dy-
namical system preserving the Lebesgue measure in the phase space encod-
ing positions and momenta of all particles. If in the beginning all particles
are in one half of the box, then as the system evolves it is natural to expect
that these particles eventually will be more or less uniformly distributed
between this half and the other one. Poincaré’s recurrence theorem allows
to conclude though that sooner or later there will be a moment when these
particles will all gather within the same half of the box. This seems to
contradict both intuition and experience. The explanation is that the time
required for such an event to occur in a realistic setting is astronomically
large, much larger than the length of any conceivable experiment, and so
these events are never observed in practice.

4. Stochastic processes: basic notions

There is a useful interpretation of metric dynamical systems in terms of
stationary processes, for example for any random variable f : X → R, the
process (Xn)n∈N defined by Xn(ω) = f(θnω) is a stationary process. First,
let us recall some basic facts concerning stochastic processes in general.

Definition 2.6. Let (X, X ) be a measurable space and T be any set.
Any collection of X-valued random variables (Xt)t∈T is called a stochastic
process.

The set T in this definition plays the role of time axis, and if T ⊂ R, then
for fixed ω ∈ Ω, the realization (Xt(ω))t∈T is also often called the trajectory
or sample path corresponding to ω.

The space of these sample paths is denoted by

XT = {x : T → X}.

If T = N, then XT consists of one-sided sequences (x1, x2, . . .), and if T = Z,
then XT consists of two-sided sequences (. . . , x−2, x−1, x0, x1, x2, . . .).
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It is often useful to consider an (X, X )-valued process X as one XT-valued
random variable, and so we need to introduce an appropriate σ-algebra
on XT.

Definition 2.7. Suppose T ⊂ R. For m ∈ N, n1 < . . . < nm, and
A1, . . . , Am ∈ X , we denote

(2.10) Cn1,...,nm(A1, . . . , Am) = {x ∈ XT : xn1 ∈ A0, . . . , xnm ∈ Am}.

Sets of this form are called elementary cylinders.

Let us stress that all cylinders have non-unique representations of the
form (2.10). For example,

Cn1,...,nm,nm+1(A1, . . . , Am,X) = Cn1,...,nm(A1, . . . , Am).

Definition 2.8. The cylindric σ-algebra XT is generated by all elemen-
tary cylinders.

For any time n ∈ T, the projection πn : XT → X is defined by πn(x) = xn.

Theorem 2.5. The cylindric σ-algebra XT is generated by maps πn.

The family of all elementary cylinders is a π-system, i.e., it is closed
under intersection.

Theorem 2.6 (see [Shi96, Lemma II.2.3]). If the restrictions of two
probability measures on a π-system E coincide, then the measures coincide
on σ(E).

The following corollary says that a probability measure on (XT, X T) is
uniquely defined by its values on elementary cylinders.

Theorem 2.7. Let P and Q be two measures on (XT, X T) such that for
any elementary cylinder C, P(C) = Q(C). Then P = Q.

To formulate an existence result, we need to introduce general cylinders.

Definition 2.9. Let m ∈ N and n1, . . . , nm ⊂ T satisfy n1 < . . . < nm,
we denote by

Xn1,...,nm = σ(Cn1,...,nm(A1, . . . , Am), A1, . . . , Am ∈ X).

Elements of Xn1,...,nm are called cylinders.

Theorem 2.8 (Kolmogorov–Daniell extension theorem). If (X, X ) is a
Borel space and P is a nonnegative function on all cylinders such that for
any m ∈ N and any n1, . . . , nm ⊂ T satisfying n1 < . . . < nm, the restriction
of P to Xn1,...,nm is a probability measure, then there is a unique measure
on X T such that its restriction on cylinders coincides with P.

Often in these notes we will work with Borel spaces, as in this theorem.
Let us introduce the corresponding definitions.
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Definition 2.10. We say that measurable spaces (X, X ) and (Y, Y) are
measurably isomorphic if there is a bijection ϕ : X → Y such that ϕ is
(X , Y)-measurable and ϕ−1 is (Y,X )-measurable.

Definition 2.11. A measurable space (Y, Y) is called a Borel space if
it is measurably isomorphic to some space (X, X ), where X is a Borel subset
of [0, 1], and X is the σ-algebra induced by B([0, 1]) on X .

Remark 2.1. The family of Borel spaces (X, X ) is extremely rich and
includes, for example, Borel subsets of Polish spaces, see [Kur66]. We recall
that a metric set (X, ρ) is called Polish if it is complete and separable.

5. Interpretation of measure-preserving maps via stationary
processes

In this section we describe the connection between stationary processes
and measure-preserving transformations.

Definition 2.12. Suppose T = N, Z+, or Z and let (Xt)t∈T be a sto-
chastic process with values in X. This process is called stationary if for any
m ∈ N, any i1, . . . , im ∈ T, and any r ∈ N, the distributions of (Xi1, . . . ,Xim)
and (Xi1+r, . . . ,Xim+r) coincide, i.e., for any A1, . . . , Am ∈ G,

(2.11) P{Xi1 ∈ A1, . . . ,Xim ∈ Am} = P{Xi1+r ∈ A1, . . . ,Xim+r ∈ Am}.

It is sufficient to check this definition for r = 1 since the statement for
the general r follows by induction.

The simplest example of a stationary process is a sequence of indepen-
dent and identically distributed (i.i.d.) random variables (Xn)n∈N. By def-
inition, this means that there is a probability P on (R, B(R)) such that for
any m and any i1, . . . , im ∈ N,

P{Xi1 ∈ A1, . . . ,Xim ∈ Am} = P(A1)P(A2) . . . P (Am),

so identity (2.11) easily follows. Intro to Gaussian
processes — ?

Lemma 2.2. Suppose X is an (X, X )-valued random variable on a prob-
ability space (Ω,F, P), and θ is P-preserving transformation on Ω. Then the
stochastic process (Xn)n∈Z+ defined by

(2.12) Xn(ω) = X(θnω)

is stationary. If θ is measurably invertible, then the process (Xn)n∈Z defined
by the same formula is stationary.
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Proof: Let us check the definition of stationarity for shift r = 1:

P{ω : Xi1+1(ω) ∈ A1, . . . ,Xim+1(ω) ∈ Am}

=P{ω : X(θi1+1ω) ∈ A1, . . . ,X(θim+1ω) ∈ Am}

=P{ω : X(θi1θω) ∈ A1, . . . ,X(θimθω) ∈ Am}

=P{ω : X(θi1ω) ∈ A1, . . . ,X(θimω) ∈ Am}

=P{ω : Xi1(ω) ∈ A1, . . . ,Xim(ω) ∈ Am},

where the third identity follows from the θ-invariance of P. �

One can also make sense of a converse statement: every stationary pro-
cess can be represented in the form described in Lemma 2.2. Suppose
(Xn)n∈Z+ is an (X, X )-valued stationary process on a probability space
(Ω,F, P).

One way to look at the process X is to view it as a map from Ω to the
space of trajectories Ω̃ = XZ+, i.e., the space of all functions x : Z+ → X, i.e.,
sequences x = (x0, x1, . . .), equipped with cylindric σ-algebra F̃ = X Z+. In

fact, the process X is (F, F̃)-measurable (to see this, it is sufficient to check
that X-pre-images of all cylinders are in F). Therefore, we can consider

the pushforward P̃ = PX−1 of P to (Ω̃, F̃) under this map. The result is

a probability space (Ω̃, F̃ , P̃). The process (X̃n)n∈Z+ defined by X̃n(x) =

πnx = xn, n ∈ Z+, is a stationary process under P̃, because its distribution
is the same as that of the original process X.

Let us prove that P̃ is invariant under the shift map θ : Ω̃ → Ω̃ defined
by θ(x0, x1, . . .) = (x1, x2, . . .). To check this, let us recall that, due to the

Kolmogorov–Daniell extension theorem, measures on (Ω̃, F̃) = (XZ+, XZ+)
are uniquely determined by their values on cylinders

Cn(A0, . . . , An−1) = {x ∈ XZ+ : x0 ∈ A0, . . . , xn−1 ∈ An−1},

where n ∈ N, A0, . . . , An−1 ∈ X . So our claim follows from

P̃(θ−1Cn(A0, . . . , An−1)) = P̃(Cn+1(X, A0, . . . , An−1))

= P{X1 ∈ A0, . . . ,Xn ∈ An−1}

= P{X0 ∈ A0, . . . ,Xn−1 ∈ An−1}

= P̃(Cn(A0, . . . , An−1)).

Now we can take the random variable π0 : Ω̃ → X defined by π0(x) = x0
and notice that the process X̃n on (Ω̃, F̃ , P̃) can be represented as X̃n(x) =
π0(θ

nx). This is what we wanted, because this representation is of form (2.12).
However, to obtain this representation we had to switch from the original
probability space to the canonical space of trajectories. The same procedure
applies to processes indexed by N and Z.

It is often convenient to work with stationary processes directly on their
trajectory spaces. For example, when working with i.i.d. (X, X )-valued ran-
dom variables, it is convenient to work with product measure on (XZ+,X Z+).
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If X is finite then (XZ+, XZ+) equipped with a product measure and coor-
dinate shift θ is called a Bernoulli shift.

6. Ergodicity

In this section we work with a probability space (Ω,F, P) equipped with
a P-preserving transformation θ. The goal of this section is to define and
study the notion of ergodicity of (Ω,F, P, θ). This notion has to deal with
the natural question of whether one can decompose Ω into smaller sets and
study the dynamics restricted to those sets separately.

Definition 2.13. A set A is called (backward) invariant if θ−1A = A,
forward invariant or positive invariant if θA ⊂ A, and almost invariant or
invariant mod 0 if P(θ−1A�A) = 0.

Lemma 2.3. (a) If A ∈ F is invariant, then A is forward invariant.
(b) If A ∈ F is forward invariant then it is almost invariant.
(c) If A ∈ F is almost invariant, then there is an invariant set B such that

P(A�B) = 0.
(d) If A ∈ F is forward invariant, then there is an invariant set B such that

P(A�B) = 0.

Proof: To prove part (a), it suffices to notice that invariance of A means
that ω ∈ A iff θω ∈ A.

To prove part (b), we first claim that for any forward invariant set A,
A ⊂ θ−1A. This is implied by

A ⊂ θ−1θA ⊂ θ−1A,

where the first inclusion holds for any set A, and the second one follows
from θA ⊂ A. Since P is preserved by θ, we have P(A) = P(θ−1A), so
P(θ−1A�A) = P(θ−1A \ A) = 0.

Part (d) follows from (b) and (c), so it remains to prove (c). Let A be
almost invariant. Let

B = lim inf
n→∞

θ−nA =
∞�

n=1

∞�

k=n

θ−kA.

Then θ−1B = lim infn→∞ θ
−n−1A = B, i.e., B is invariant. Let us prove

P(A�B) = 0. The almost invariance of A and the measure-preserving
property of θ imply that for all n ∈ N,

P(θ−(n+1)A�θ−nA) = P(θ−n(θ−1A�A)) = P(θ−1A�A) = 0.

Therefore,

(2.13) P(θ−nA�A) = 0, n ∈ N.

(2.14) A \ B = A ∩
∞�

n=1

∞�

k=n

(θ−kA)c ⊂ A ∩
∞�

k=1

(θ−kA)c =
∞�

k=1

(A \ θ−kA).
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(2.15) B \ A =
∞�

n=1

∞�

k=n

θ−kA \ A ⊂
∞�

n=1

(θ−nA \ A).

Now our claim follows from (2.13), (2.14), and (2.15). �

It is easy to check that the families Iθ and I∗θ of invariant and almost
invariant sets are σ-algebras. However, the forward invariant sets do not
form a σ-algebra in general and for this reason they are not convenient to
work with in the context of measure theory. This is tightly related to the fact
that taking pre-image is a more well-behaved operation than taking images,
and thus it is easy to define pushforwards of σ-algebras and measures by
taking pre-images, and there is no natural way to define pullbacks of these
objects via forward images.

Problem 2.3. Give an example of a metric dynamical system such that
the collection of forward-invariant sets does not form a σ-algebra. Hint:
complements.

Definition 2.14. A transformation is called ergodic if every invariant
set has measure 0 or 1.

This definition means that one cannot split our metric dynamical system
into two.

Lemma 2.4. A transformation θ is ergodic if and only if every almost
invariant set has measure 0 or 1.

Proof: The “if” part is obvious since I ⊂ I∗. The converse is a direct
consequence of part (c) of Lemma 2.3. �

Definition 2.15. A random variable X is called invariant if X(ω) =
X(θω) for all ω ∈ Ω.

Definition 2.16. A random variable X is called almost invariant or
invariant mod 0 if X(ω) = X(θω) for P-almost all ω ∈ Ω.

The following obvious statement gives one more reason to define invari-
ant and almost invariant sets as in Definition 2.13.

Lemma 2.5. A set A is invariant if and only if 1A is invariant. A set A
is almost invariant if and only if 1A is almost invariant.

Definition 2.17. We say that a (real-valued) random variable X is
a.s.-constant if there is a number c ∈ R such that P{X = c} = 1.

Theorem 2.9. The following three conditions are equivalent if θ is a
P-preserving transformation:

(a) θ is ergodic;
(b) every almost invariant random variable is a.s.-constant;
(c) every invariant random variable is a.s.-constant;
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Proof: Condition (b) trivially implies (c), and the latter implies (a) as a
specific case for indicator random variables. It remains to derive (b) from (a).
So we suppose that X is a random variable almost invariant under an ergodic
transformation θ. For every real number t, the set A(t) = {X ≤ t} is almost
invariant. Ergodicity of θ and Lemma 2.4 imply P{X ≤ t} = 0 or 1 for any
t ∈ R. Notice that the function F : R → R defined by F(t) = P{X ≤ t} is
the distribution function of X. Thus, limt→−∞ F(t) = 0, limt→+∞ F(t) = 1,
F is nondecreasing and left-continuous. Therefore, there is some point c ∈ R
such that F(t) = 0 for all t ≤ c and F(t) = 1 for all t > c. Then P{X =
c} = 1, and the lemma is proved. �

Remark 2.2. It is sufficient to verify conditions (b) and (c) of The-
orem 2.9, for bounded random variables. In fact, for a general random
variable X these conditions can be verified by checking them first for its
truncations XN = X1|X|≤N and then letting N → ∞.

Remark 2.3. Conditions (b) and (c) of Theorem 2.9 remain necessary
and sufficient conditions for ergodicity if stated for complex-valued random
variables instead of real-valued ones. To see that, consider the real and
imaginary parts of complex valued random variables.

Let us now check ergodicity for some systems.

Lemma 2.6. Let (Ω,F, P) be the unit circle S1 equipped with Borel σ-
algebra and Lebesgue measure. If α is irrational, then the circle rotation θ
by angle α defined in (2.1) is ergodic.

Proof: Let us take an almost invariant bounded random variable f and
prove that it is a.s.-constant. Every bounded measurable function on S can
be decomposed into a Fourier series convergent in L2(S1):

(2.16) f(ω) =
�

k∈Z

cke
2πikω,

where

ck =

�

S1

e−2πikωf(ω)dω, k ∈ Z.

Since f is almost invariant, f(ω) and f(θω) coincide almost everywhere.
So the Fourier series for f(θω) coincides with (2.16). Therefore, we can
compute ck as Fourier coefficients for f(θω):

ck =

�

S1

e−2πikωf(ω + α)dω = e2πiα
�

S1

e−2πikωf(ω)dω = e2πiαkck, k ∈ Z.

If α is irrational, then e2πiαk �= 1 for all k �= 0, so ck may be nonzero only
for k = 0, which means that f is a.s.-constant. �

If α = m/n is rational, then θ is not ergodic since f(ω) = e2πinω is a
nonconstant invariant function.
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Theorem 2.10. Let θ be a shift on the torus Td defined by (2.6). It is
ergodic if and only if the identity r1α1 + . . . + rdαd = m is impossible for
any r1, . . . , rd,m ∈ Z such that not all of them are equal to 0.

Problem 2.4. Prove Theorem 2.10.

Theorem 2.11 (A variation on Kolmogorov’s 0-1 Law, REFERENCE????).
Let (X, X , P ) be a probability space and (Ω,F, P) = (XN, XN(X), PN), where
XN is the cylindric σ-algebra and PN is the product measure on it with mar-
ginal distribution P . Then the shift transformation θ defined by θ(ω1, ω2, . . .) =
(ω2, ω3, . . .) is measure preserving and ergodic.

Proof: The invariance of P under θ follows from the discussion right after
Lemma 2.2.

To prove ergodicity, consider an almost invariant set A. It is sufficient to
prove that P(A) = P2(A) which can be rewritten as P(A ∩ A) = P(A)P(A)
or, using the almost invariance of A, as P(A∩θ−nA) = P(A)P(θ−nA) for all
n ∈ N. This means that A is independent of itself or its pre-images under θn.
To prove this, we will approximate A and θ−nA (for large n) by cylinders
that depend on disjoint coordinate sets and thus are independent.

Since A ∈ XN, it can be approximated by cylinders, i.e., for any ε > 0
there is a set Aε ∈ XN, a number k(ε) ∈ N and a set Bε ∈ Xk(ε) such that
Aε = {ω : (ω1, . . . , ωk(ε)) ∈ Bε}, and P(Aε�A) < ε.

Let us take any n ∈ N satisfying n ≥ k(ε). Sets Aε and θ−nAε = {ω :
(ωn+1, . . . , ωn+k(ε)) ∈ Bε} are independent by the definition of the product
measure, so

(2.17) P(Aε ∩ θ
−nAε) = P(Aε)P(θ−nAε) = P2(Aε).

To deal with the left-hand side, we notice that Aε is very close to an almost
invariant set:

|P(Aε ∩ θ
−nAε) − P(A)| =|P(Aε ∩ θ

−nAε) − P(A ∩ θ−nA)|

≤|P(Aε ∩ θ
−nAε) − P(Aε ∩ θ

−nA)|

+ |P(Aε ∩ θ
−nA) − P(A ∩ θ−nA)|

≤|P(θ−n(Aε�A)| + |P(Aε�A)| ≤ 2ε.

For the right-hand side of (2.17), we have

|P2(Aε) − P2(A)| = (P(Aε) + P(A)) · |P(Aε) − P(A)| ≤ 2|P(Aε�A)| ≤ 2ε,

so |P2(A) − P(A)| ≤ 4ε. Since ε > 0 is arbitrary, we have P2(A) = P(A), so
P(A) = 0 or 1. �



CHAPTER 3

Ergodic theorems for measure-preserving
transformations

1. Von Neumann’s ergodic theorem in L2.

Based on [Hal60, pp.13–17].
Suppose we have a metric dynamical system (Ω,F, P, θ). We are inter-

ested in the convergence of time averages

(3.1) Anf(ω) =
1

n

n−1�

k=0

f(θkω)

as n → ∞ for measurable functions f : Ω → R. There is an elegant proof of
this convergence in the sense of L2 due to Riesz.

Let us first introduce an L2 framework. We recall that the space of
all measurable functions f : F → C such that E|f|2 < ∞ with the usual
identification of functions that coincide P-almost everywhere, is a complex
Hilbert space denoted by L2(Ω,F, P) or L2 for brevity, with inner product

�f, g� = Efḡ and norm �f� = �f, f�1/2 = (E|f|2)1/2.
For any measurable f, we will denote by Uf the function defined by

Uf(ω) = f(θω), ω ∈ Ω. The following observation was first made by Koop-
man in [Koo31] in the context of Hamiltonian systems:

Lemma 3.1. The operator U is an isometry in L2, i.e., if f ∈ L2, then
�Uf� = �f�.

Proof: For any A ∈ F, we have U1A = 1θ−1A. Therefore, the invariance
of P under θ implies

�U1A, U1A� = E|1θ−1A|
2 = P(θ−1A) = P(A).

Also, for any disjoint measurable sets A and B,

�U1A, U1B� = E1θ−1A1θ−1A = 0.

Now we can use linearity of U to derive the result for any simple function
f =

�m
j=1 cj1Aj , where m ∈ N, (Aj)

m
j=1 is a collection of mutually disjoint

25
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measurable sets, and cj ∈ C for j = 1, . . . ,m:

�Uf�2 =

m�

i,j=1

cic̄j�U1Ai, U1Aj �

=

m�

i,j=1

cic̄j�1θ−1Ai
, 1θ−1Aj

� =
�

i=1

|ci|
2P(Ai) = �f�2.

For a general f , we can find a sequence of simple functions fn such that
f2n(ω) is increasing to f2(ω) as n → ∞ for all ω ∈ X. Then (Ufn)2 also
increases to (Uf)2 pointwise, and we can use the above identity along with
the monotone convergence theorem to write:

�Uf�2 = lim
n→∞

�Ufn�
2 = lim

n→∞
�fn�

2 = �f�2.

�

Problem 3.1. This problem is a generalization of Lemma 3.1. Let
(Ω,F, P, θ) be a metric dynamical system. Let p ∈ [1,∞]. Prove that if X
is a random variable belonging to Lp(Ω,F, P), then UX ∈ Lp(Ω,F, P), and
�UX�Lp(Ω,F,P) = �X�Lp(Ω,F,P).

Lemma 3.1 shows that studying the convergence of ergodic averages in
L2 is possible via the asymptotic analysis of operators 1

n

�n−1
k=0 U

k, where U
is an isometry of a complex Hilbert space.

The first version of the following L2 ergodic theorem appeared in [vN32].

Theorem 3.1. Let U be an isometry of a complex Hilbert space H. Let
πI be the orthogonal projection onto the space I = {f ∈ H : Uf = f}. Then,
for every f ∈ H,

(3.2) Anf =
1

n

n−1�

k=0

Ukf

converges to πIf as n → ∞.

Proof: Let us denote G = {g − Ug : g ∈ H} and prove that I and the
closure of G are orthogonal complements of each other. If �f, g − Ug� = 0
for some f and all g, then �f, g� = �f, Ug� for all g. In particular, �f, f� =
�f, Uf�. Using this property and the isometry property, we obtain

�Uf − f, Uf − f� = �Uf, Uf� − �Uf, f� − �f, Uf� − �f, f�

= �f�2 − �f�2 − �f�2 + �f�2 = 0,

so Uf = f. Thus Ḡ⊥ ⊂ I. Since the isometry property can be rewritten as
�Uf, Ug� = �f, g� for all f, g ∈ H, we can take any f ∈ I, g ∈ H and write

�f, g − Ug� = �f, g� − �f, Ug� = �f, g� − �Uf, Ug� = �f, g� − �f, g� = 0.

Therefore, I ⊂ Ḡ⊥, and thus I = Ḡ⊥. So, now we can decompose any f ∈ H
as f = fI + fG, where fI ∈ I and fG ∈ Ḡ are orthogonal projections of f
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onto I and Ḡ, and it is sufficient to see how the ergodic averaging acts on
each of the spaces I and Ḡ.

If f ∈ I, then Anf = f.
If f ∈ G, i.e., if f = g − Ug for some g ∈ H, then

�Anf� =

�
�
�
�
�

1

n

n−1�

k=0

Uk(g − Ug)

�
�
�
�
�

=

�
�
�
�

1

n
(g − Ung)

�
�
�
� ≤

2

n
�g�

Let now f ∈ Ḡ. Then for any ε > 0 there is fε = gε − Ugε ∈ G such that
�f − fε� ≤ ε. Therefore,

�Anf� ≤ �An(f − fε)� + �Anfε� ≤ ε + 2�gε�/n,

where we used that An is a contraction, i.e., �Ah� ≤ �h� for all h ∈ H. So,
lim supn→∞ �Anf� ≤ ε, and since the choice of ε is arbitrary, we conclude
that lim supn→∞ �Anf� = 0, and the proof is complete. �

In the context of measure-preserving transformations, the space I always
contains all constant functions.

Problem 3.2. Prove that if there are no other almost invariant functions,
i.e., the transformation is ergodic, then the spaces I and I⊥ are, respectively, the
space of constants and the space of functions f ∈ L2 with Ef = 0. Derive that in
this case, the limit in the theorem is deterministic and equal to Ef.

In general, one can introduce the invariant σ-algebra FI generated by
all functions from I. Then πIf can be understood as the conditional expec-
tation E(f|FI).

The simplest cases where this theorem applies are rotations of Euclidean
spaces R2 and R3 (or their complexifications).

Let us also briefly describe the spectral approach to this theorem based
on von Neumann’s original idea. He proved that the group (Un)n∈Z gener-
ated by a unitary operator U admits the following “spectral” representation:

Un =

�

[−π,π)
einϕP(dϕ), n ∈ Z,

for some projector-valued measure P on [−π, π). So, splitting the domain
of integration into a one point set {0} and its complement, we obtain

An =

�

[−π,π)

1

n

n−1�

k=0

eikϕP(dϕ) = P({0}) +

�

[−π,π)\{0}

einϕ − 1

n(eiϕ − 1)
P(dϕ),

The integrand in the right-hand side is bounded by 1 and converges to 0,
so An converges to P({0}) which is exactly the projection onto the space
of eigenvectors of U associated to eigenvalue ei·1·0 = 1, i.e., the set I of
invariant vectors.

Another instance of this general approach is the law of large numbers
for L2-stationary C-valued processes. If X is such a process then there is a
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number a and an orthogonal random measure Z on [−π, π) such that

Xn = a +

�

[−π,π)
einϕZ(dϕ), n ∈ Z.

Therefore, we can write

1

n
(X0 + . . . + Xn−1) = Z({0}) +

�

[−π,π)\{0}

einϕ − 1

n(eiϕ − 1)
Z(dϕ), n ∈ N,

and conclude that
1

n
(X0 + . . . + Xn−1)

L2

→ Z({0}), n → ∞.

Therefore, the limit is nonrandom and equals zero if the spectral measure
has no atom at zero, i.e., E|Z({0})|2 = 0.

2. Birkhoff’s pointwise ergodic theorem

The following theorem was first proved by G.Birkhoff in [Bir31].

Theorem 3.2. Let (Ω,F, P, θ) be a metric dynamical system, I the σ-
algebra of θ-invariant sets, and f ∈ L1(Ω,F, P). Then, with probability
1,

Anf → E[f|I], n → ∞,

where the ergodic averages An are defined by (3.1) or, equivalently, by (3.2)
and Uf(ω) = f(θω).

If in addition θ is ergodic then with probability 1,

(3.3) Anf → Ef, n → ∞.

There exist various proofs of the pointwise ergodic theorem. They all do
not seem as transparent as the proof of the L2 version. Here, we give one of
the simplest and most conceptual proofs constructed by Y. Katznelson and
B. Weiss [KW82] and based on the idea of the nonstandard analysis proof
of T. Kamae [Kam82].

Proof: Due to linearity of time averages and conditional expectations, it
is sufficient to prove the convergence for nonnegative function f. Let us
introduce

f̄(ω) = lim sup
n→∞

Anf(ω), f(ω) = lim inf
n→∞

Anf(ω), ω ∈ Ω.

A priori we do not know if f̄ and f are finite, but they are almost invariant.
To see that, we write

|Anf(ω) − An(θω)| ≤
1

n
f(ω) +

1

n
f(θnω).

The first term on the right-hand side clearly converges to 0 as n → ∞ for
all ω. The second term converges to 0 almost surely. The latter follows from
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the finiteness of Ef: for every ε > 0, we have
∞�

n=0

P{f(θnω) > εn} < ∞,

so the Borel–Cantelli Lemma implies that f(θnω) > εn at most for finitely
many values of n.

We only need to show that

(3.4) Ef̄1B ≤ Ef1B ≤ Ef1B, B ∈ I,

because then we will have P{f̄ = f} = 1, so P{Anf → f̄} = 1 and Ef̄1B =

Ef1B. Also f̄ is almost invariant and thus I∗-measurable.
Let us prove the first inequality in (3.4). To that end we will need to

use several truncations. Let us take a large number M > 0 and define

f̄M(ω) = f̄(ω) ∧M, ω ∈ Ω.

For all ω, f̄M(ω) is finite and does not exceed f̄(ω). Let us fix ε > 0, define

n(ω) = inf
�
n : f̄M(ω) ≤ Anf(ω) + ε

�
, ω ∈ Ω,

and notice that n(ω) < ∞ for all ω. Almost-invariance of f̄ under θ im-
plies almost-invariance of f̄M , so there is a full-measure set Ω� such that
f̄M(θjω) = f̄M(ω) for all ω ∈ Ω� and j ∈ N, and we get

(3.5)

n(ω)−1�

j=0

f̄M(θjω) = n(ω)f̄M(ω) ≤

n(ω)−1�

j=0

f(θjω) + n(ω)ε, ω ∈ Ω�,

where in the inequality we used the definition of n(ω). Note that (3.5) is a
lower bound for time averages of f by time averages of f̄M (an approximation
to f̄), and to prove the first inequality in (3.4) we need to convert (3.5)
into an integral inequality. If only the upper limit of summation were not
random, we would have integrated both sides immediately, but n is random.
Nevertheless we shall try to obtain a version of (3.5) with a deterministic
number L replacing n(ω). The idea is to split the summation from 0 to
L − 1 into random intervals such that on each of them we can apply (3.5).
To achieve that, it is convenient though to work with an auxiliary version
of (3.5) where random variable n is replaced by its bounded truncation.

Let us find N > 0 such that P(C) > 1 − ε/M, where C = {n(ω) < N},
and introduce fM,ε = f1C + (f ∨M)1Cc and ñ = n1C + 1Cc. Then

(3.6)

ñ(ω)−1�

j=0

f̄M(θjω) = ñ(ω)f̄M(ω) ≤

ñ(ω)−1�

j=0

fM,ε(θ
jω) + ñ(ω)ε, ω ∈ Ω�,

because on C this coincides with (3.5), and on Cc we have f̄M ≤ M ≤ fM,ε.
Let us now choose L > 0 large enough to guarantee NM/L < ε and for

all ω ∈ Ω define n0(ω) = 0 and, inductively,

nk(ω) = nk−1(ω) + ñ(θnk−1(ω)ω), k ∈ N.
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The purpose of this is to split the sum from 0 to L−1 into intervals such that
on each of them we can apply (3.6): we define k(ω) = max{k : nk(ω) ≤ L−1}
and write

L−1�

j=0

f̄M(θjω) =

k(ω)�

k=1

nk(ω)−1�

j=nk−1(ω)

f̄M(θjω) +
L−1�

j=nk(ω)(ω)

f̄M(θjω).

Applying (3.6) to each of the k(ω) terms and estimating the last special
term by NM (here we use the fact that ñ(ω) is uniformly bounded by N,
and so is L − nk(ω)(ω)), we obtain

L−1�

j=0

f̄M(θjω) ≤

L−1�

j=0

fM,ε(θ
jω) + Lε + NM.

Integrating both sides over B and dividing by L gives

(3.7) Ef̄M1B ≤
1

L

L−1�

j=0

EfM,ε(θ
jω)1B + ε +

NM

L
≤ EfM,ε1B + 2ε,

where we used invariance of B and measure-preserving property of θ:

EfM,ε(θ
jω)1{ω∈B} = EfM,ε(ω)1{ω∈θ−jB} = EfM,ε(ω)1{ω∈B}.

Since fM,ε ≤ f +M1Cc, we can estimate the right-hand side of(3.7) with

EfM,ε1B ≤ Ef1B +MP(Cc) ≤ Ef1B + ε,

we obtain

(3.8) Ef̄M1B ≤ Ef1B + 3ε.

Letting ε → 0 and then M → ∞, we obtain the first inequality in (3.4).
To prove the second inequality in (3.4), we do not even need to introduce

a a truncation analogous to f̄M. We simply fix ε > 0, define

n(ω) = inf
�
n : f(ω) ≥ Anf(ω) − ε

�
, ω ∈ Ω,

introduce C = {n(ω) > N} where N is chosen so that Ef1Cc < ε, define
fε = f1C and ñ = n1C + 1Cc, and proceed in a similar way to the proof of
the first inequality in (3.4).

To prove (3.3), it is sufficient to notice that in the ergodic case, I∗

contains only sets of probability 0 and 1, so E[f|I∗]
a.s.
= Ef.

�

Problem 3.3. Check the details of the proof of the second inequality
in (3.4).

Problem 3.4. Let (Ω,F, P) be a probability space and suppose that
σ-algebras G0, G1 ⊂ F satisfy the following condition: for every i ∈ {0, 1},
every set A ∈ Gi there is a set B ∈ G1−i such that P(A�B) = 0. Then for

every random variable X ∈ L1(Ω,F, P), E[X|G1]
a.s.
= E[X|G2]. In particular,
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if G is a σ-subalgebra of F such that for each A ∈ G, P(A) = 0 or 1, then

E[X|G]
a.s.
= EX for any random variable X ∈ L1(Ω,F, P).

Theorem 3.3 (L1 ergodic theorem). Under the conditions of theorem 3.2,

lim
n→∞

E|Anf − E[f|I]| = 0.

Proof: For ε > 0 we can find a bounded function fε such that E|fε−f| < ε.
The pointwise ergodic theorem applies to fε and since the sequence Anfε is
uniformly bounded, we obtain by bounded convergence theorem that

lim
n→∞

E|Anfε − E[fε|I]| = 0,

i.e.,
E|Anfε − E[fε|I]| < ε

for sufficiently large n. On the other hand, due to the measure preserving
property,

E|Anfε − Anf| ≤
1

n

n−1�

k=0

E|fε(θ
kω) − f(θkω)| ≤

1

n

n−1�

k=0

E|fε(ω) − f(ω)| < ε,

and due to the Jensen inequality for conditional expectations,

E |E[fε|I] − E[f|I]| ≤ EE[|fε − f||I] = E|fε − f| < ε.

Since ε is arbitrary, the theorem follows from the last three inequalities. �

We can now look at the previous examples from the point of view of the
ergodic theorem.

Theorem 3.4 (Kolmogorov’s strong law of large numbers, reference????).
Let (Xn)n∈N be a sequence of independent identically distributed random
variables such that X1 has a finite expectation a. Then

1

n
(X1 + . . . + Xn)

a.s.
→ a, n → ∞.

Proof: This theorem is a direct consequence of Birkhoff’s ergodic theorem
and ergodicity of the standard shift i.i.d. sequences. �

Thus the pointwise ergodic theorem can be viewed as a generalization
of the strong law of large numbers.

In fact, the ergodic theorem provides the following description of an
invariant measure in the ergodic case: the measure of a set A equals the
average occupation time for A, i.e., the average fraction of time spent by
the trajectory in A:

(3.9) lim
n→∞

�n−1
j=0 1θnω∈A

n
= P(A).

Theorems 2.1 and 2.2 can also be understood as a corollaries of ergod-
icity of circle rotations (Theorem 2.10) and the pointwise ergodic theorem.
However, the latter provides convergence only for almost every ω whereas
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the statements of those results, in fact, hold for all ω ∈ S1 without exception.
This gap can be closed easily.

Problem 3.5. Follow these lines to construct a complete proof of The-
orems 2.1 and 2.2.

One can use the ergodic theorem to give equivalent definition of ergod-
icity:

Theorem 3.5. Let θ be a measure preserving tranformation on (Ω,F, P).
The following statements are equivalent:

(a) θ is ergodic;
(b) For any f ∈ L1(Ω,F, P), (3.3) holds;
(c) For any A ∈ F, (3.9) holds.

Proof: Condition (a) implies condition (b) by the ergodic theorem, (c) is
a specific case of (b). To derive (a) from (c), we take any invariant set A,
use the invariance of A and of Ac to write An1A = 1A, and since An1A
converges to P(A) a.s., we conclude that 1A

a.s.
= P(A), and this can happen

only if P(A) = 0 or 1. �
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3. Kingman’s subadditive ergodic theorem

Theorem 3.6 ([Kin73]). Let θ be a measure-preserving and ergodic
transformation of a probability space (Ω,F, P). Let (Xn)n∈N be a sequence
of L1 random variables that satisfy

(3.10) Xn+m(ω) ≤ Xn(ω) + Xm(θnω), n,m,∈ N.

Let a = infn∈N(EXn/n). Then

(3.11)
Xn
n

a.s.
−→a, n → ∞.

Remark 3.1. This is an extension of Birkhoff’s ergodic theorem. Other
generalizations are possible. We prove only ergodic case.

Examples: Product of independent matrices. Optimal paths. Partition
functions in random environment.

Proof: Our proof follows closely notes [Lal10]. Applying property (3.10)
inductively, we obtain that for any m ∈ N and any finite sequence (nk)

m
k=1

of natural numbers,

(3.12) Xn1+...+nm(ω) ≤ Xn1(ω) + Xn2(θn1ω) + . . . + Xnm(θn1+...+nm−1ω).

Defining X0 ≡ 0, we see that this inequality remains true also if (nk)
m
k=1 is

a sequence of nonnegative integers.
Let us now observe that it is sufficient to consider nonpositive random

variables. In fact, for a general sequence (Xn) satisfying the conditions of
the theorem, the sequence of random variables (Yn)n∈N defined by

Yn(ω) = Xn(ω) −

n−1�

k=0

X1(θ
kω),

is also subadditive in the sense of (3.10), and all these variables are a.s.-
nonpositive due to (3.12). If the theorem holds true for Yn(ω) then it also
holds for Xn since we can apply Birkhoff’s ergodic theorem to the second
term in the definition of Yn. So from now on we may assume that Xn ≤ 0.

There are two cases: a > −∞ and a = −∞. If a > −∞, we need to
establish the following two inequalities:

lim inf
n→∞

Xn(ω)

n

a.s.
≥ a,(3.13)

lim sup
n→∞

Xn(ω)

n

a.s.
≤ a.(3.14)

If a = −∞, it is sufficient to prove only (3.14) .
Let us start with (3.13). We denote its left-hand side by b(ω) ∈ [−∞, 0]

and claim that it is a.s.-constant. In fact, since (3.10) implies Xn+1(ω) ≤
X1(ω)+Xn(θω), by dividing both sides by n and taking the lim inf we obtain
b(ω) ≤ b(θω) for all ω.

Problem 3.6. Use the invariance of P under θ to prove that b(ω)
a.s.
= b(θω).
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So, b is θ-invariant and, due to ergodicity, has to be a.s.-constant with
respect to P.

Constants a and b are both nonpositive. Let us prove that if a > −∞,
then b ≥ a. Suppose that b < a − ε for some ε > 0. If

Bm =

�

ω : min
1≤n≤m

Xn(ω)/n ≤ a − ε

�

, m ∈ N,

then, for any δ > 0, we can find m ∈ N such that P(Bm) > 1 − δ. Let us
fix ω and take an arbitrary n ∈ N. Let R = {j ∈ {1, . . . , nm} : θjω ∈ Bm}.
By definition of R, for every j ∈ R there is k = k(j) ∈ {1, . . . ,m} such that
Xk(θ

jω) ≤ k(a − ε).
Assuming R �= ∅, let us now define two finite sequences j1, . . . , jr and

k1, . . . , kr depending on ω. First, we let j1 be the smallest number in R
and k1 = k(j1). Then we inductively set ji to be the smallest number in R
exceeding ji−1 + ki−1 − 1 and ki = k(ji) until we get to a number jr ≤ nm
such that kr = k(jr) satisfies jr + kr > maxR.

We have

(3.15) R ⊂

r�

i=1

{ji, . . . , ji + ki − 1},

where the intervals in the union on the right-hand side are mutually disjoint.
Applying (3.12) to the sequence

j1, k1, j2 − (j1 + k1), k2, j3 − (j2 + k2), . . . , kr, nm +m− (jr + kr),

and throwing out nonpositive terms corresponding to j1, j2−(j1+k1), . . . , nm+
m− (jr + kr), we obtain

Xnm+m(ω) ≤ Xk1(θj1ω) + Xk2(θj2ω) + . . . + Xkr(θjrω).

We have Xki
(θjiω) < ki(a − ε) by definition of ji, ki, i = 1, . . . , r, so

Xnm+m(ω) ≤ (k1 + . . . + kr)(a − ε) ≤ (a − ε)
nm�

i=1

1Bm(θiω),

where the last inequality follows from (3.15) and a − ε < 0. Note that

(3.16) Xnm+m(ω) ≤ (a − ε)

nm�

i=1

1Bm(θiω),

also trivially holds true if R = ∅. Let us now divide both sides of (3.16) by
nm+m and take expectations:

E
Xnm+m
nm+m

≤ (a − ε)
nm

nm+m
P(Bm).

Recalling that P(Bm) > 1 − δ, letting n → ∞ and using the definition of a,
we see that

a ≤ (a − ε)(1 − δ),

and we obtain a contradiction if we choose δ sufficiently small.
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Let us prove (3.14). If all the maps θm, m ∈ N, are ergodic, then we can
use (3.12) to write

Xnm+k(ω) ≤
n−1�

j=0

Xm(θjmω) + Xk(θ
nmω)

for n,m ∈ N and k ∈ {1, . . . ,m}, divide both sides by nm, use Xk ≤ 0, let
n → ∞, and apply Birkhoff’s ergodic theorem to the right-hand side to see
that

(3.17) lim sup
n→∞

Xn(ω)

n
≤

EXm
m

,

and (3.14) follows since m is arbitrary. However, θm does not have to be
ergodic.

Problem 3.7. Give an example of an ergodic transformation θ such
that θ2 is not ergodic.

So we need to introduce additional averaging to tackle this difficulty.
We use (3.12) to write the following m inequalities:

Xnm+k(ω) ≤
n−2�

j=0

Xm(θjmω) + Xm+k(θ
(n−1)mω)

Xnm+k(ω) ≤ X1(ω) +
n−2�

j=0

Xm(θjm+1ω) + Xm+k−1(θ
(n−1)m+1ω),

Xnm+k(ω) ≤ X2(ω) +

n−2�

j=0

Xm(θjm+2ω) + Xm+k−2(θ
(n−1)m+2ω),

. . .

Xnm+k(ω) ≤ Xm−1(ω) +

n−2�

j=0

Xm(θjm+m−1ω) + Xk+1(θ
(n−1)m+k−1ω).

Let us take the average of these inequalities and use the nonpositivity of all
the random variables involved:

Xnm+k(ω) ≤
1

m

(n−1)m−1�

j=0

Xm(θjω),

Birkhoff’s ergodic theorem now applies to the sum on the right-hand side,
so dividing both sides by nm and taking n → ∞, we obtain (3.17), which
completes the proof. �





CHAPTER 4

Invariant measures

1. Existence of invariant measures

In the last several sections we derived basic dynamical properties of
measure-preserving transformations. In particular, we obtained that in the
basic framework we have worked with, the statistical properties of dynamics
expressed in the form of time averages over long trajectories are described
in terms of the invariant measure and the σ-algebra of almost invariant sets.

In this chapter we change the point of view and notice that a typical sit-
uation that often leads to interesting and hard problems, is that a priori we
are given only a measurable space (Ω,F) and a measurable transformation θ
on it. In this case, if we want to study statistical properties of the dynamics
with the help of the theory developed above, we first need to find invariant
measures, and among them find ergodic ones and only then we may be able
to deduce statistical information about trajectories of the system. In gen-
eral, our conclusions may be different for different initial conditions since
there may be several distinct ergodic measures and a function may produce
different averages with respect to all these measures.

So we see that it is fundamental to describe the family of all invariant
distributions and specifically all ergodic distributions. Notice that here we
have made a terminological switch from ergodic transformations to ergodic
measures.

First of all we notice that the pushforward of a measure is a linear
operator: if µ1 and µ2 are finite signed measures (not necessarily probability
measures) and a1, a2 are two numbers, then a1µ1 + a2µ2 is also a finite
signed measure, and its pushforward under θ is easily seen to coincide with
a1µ1θ

−1 + a2µ2θ
−1. Therefore, we can speak about a linear operator in

the space of finite measures and see straightforwardly that an invariant
distribution plays the role of an eigenvector of this operator corresponding
to eigenvalue 1. So, we may be interested in studying the structure of the
set of all such eigenvectors.

In general, there is a variety of situations that differ from each other in
nature.

Even existence of an invariant measure is sometimes hard to establish.
However, a compactness argument due to Bogolyubov and Krylov (refer-
ence) may often be employed. We give a concrete result here, but we will
see developments of this approach throughout these notes.

37
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Theorem 4.1. Let Ω be a metric space equipped with Borel σ-algebra
B(Ω) and a measurable transformation θ on (Ω, B(Ω)). Suppose there is a
compact set K that is forward invariant under θ, and θ is continuous on K.
Then there is an invariant probability measure supported on K.

Proof: First let us notice that it is sufficient to consider the case where
K = Ω. Let now P be any probability measure on Ω. Let Pk = Pθ−k,
k ∈ Z+ and P̄n = 1

n

�n−1
k=0 Pk. We would like to extract a weakly convergent

subsequence from (P̄n)n∈Z+. Let us recall that weak convergence µn ⇒ µ
of probability measures (µn)n∈Z+ to a probability measure µ means that for
every bounded continuous function f : Ω → R

�

Ω
f(ω)µn(ω) →

�

Ω
f(ω)µ(ω), n → ∞.

The Prokhorov theorem (see [Bil68] for a classical introduction to the theory
of weak convergence of measures) states that if for any ε > 0 there is a
compact set C such that µn(C) > 1 − ε for all n, then one can extract a
weakly convergent subsequence µn� from µn. In our case, for any ε > 0 we
can choose C = Ω, so any sequence of measures on Ω contains a convergent
subsequence. So let us choose a sequence ni → ∞ such that P̄ni ⇒ P for
some probability P, i → ∞. Let us prove that P is θ-invariant. It is
sufficient to check

�

Ω
f(ω)P(dω) =

�

Ω
f(θω)P(dω),

for all continuous bounded functions f since that integrals of functions from
that set determines a measure uniquely. For such a function f,
�

Ω
f(ω)P(dω) = lim

i→∞

�

Ω
f(ω)P̄ni(dω)

= lim
i→∞

1

ni

ni−1�

k=0

�

Ω
f(ω)Pk(dω)

= lim
i→∞

�
1

ni

ni�

k=1

�

Ω
f(ω)Pk(dω) +

1

ni

�

Ω
f(ω)P(dω) −

1

ni

�

Ω
f(ω)Pni(dω)

�

= lim
i→∞

1

ni

ni−1�

k=0

�

Ω
f(θω)Pk(dω) =

�

Ω
f(θω)P(dω),

which completes the proof. �

2. Structure of the set of invariant measures.

Theorem 4.2. Let θ be a measurable transformation on (Ω,F). Suppose
P1 and P2 are two distinct θ-invariant and ergodic measures on (Ω,F). Then
they are singular to each other.
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Proof: Let us take a bounded random variable X such that EP1X �= EP2X.
By Birkhoff’s ergodic theorem, there are sets A1,A2 ∈ F such that P1(A1) =
P2(A2) = 1, and that if i ∈ {1, 2}, then

1

n

n−1�

k=0

X(θkω) → EPi
X, ω ∈ Ai.

Therefore, A1 ∩ A2 = 0, and P1 and P2 are mutually singular. �

For a measurable space with a measurable transformation (Ω,F, θ), the
set I(Ω,F, θ) of invariant probability measures is a convex set, i.e., for every
Q1,Q2 ∈ I(Ω,F, θ) and every α ∈ [0, 1], the measure P = αQ1 + (1 − α)Q2
is also θ-invariant, as a straightforward computation shows. Let us study
the extreme points of I(Ω,F, θ). A point µ ∈ I(Ω,F, θ) is called an extreme
point if conditions Q1,Q2 ∈ I(Ω,F, θ), α ∈ (0, 1), and

(4.1) P = αQ1 + (1 − α)Q2,

imply Q1 = Q2 = P.

Theorem 4.3. A measure P is an extreme point of I(Ω,F, θ) iff (Ω,F, P, θ)
is ergodic.

Proof: Let (Ω,F, P, θ) be not ergodic. Then there is an invariant set B
with P(B) ∈ (0, 1). Then Bc is also invariant. Let us define measures Q1
and Q2 by Q1(A) = P(A|B) and Q2(A) = P(A|Bc), and set α = P(B).
Then (4.1) is satisfied, and both measures Q1,Q2 are invariant: for any
set A,

Q1(θ
−1A) = P(θ−1A|B) =

P(θ−1A ∩ B)

P(B)
=

P(θ−1A ∩ θ−1B)

P(B)

=
P(θ−1(A ∩ B))

P(B)
=

P(A ∩ B)

P(B)
= Q1(A),

and a similar computation applies to Q2. Also, Q1 �= P since Q1(B) = 1 �=
P(B). Therefore, P is not an extreme point.

Next, let P be ergodic and let decomposition (4.1) hold with α ∈ (0, 1)
and invariant measures Q1,Q2. Let us take any bounded measurable func-
tion f. Ergodic theorem implies that for a set A such that P(A) = 1 and

(4.2) lim
n→∞

1

n

n−1�

k=0

f(θkω) =

�

Ω
f(ω)P(dω), ω ∈ A.

Due to (4.1), measures Q1 and Q2 are absolutely continuous with respect
to P. Since P(Ac) = 0, we have Q1(A

c) = Q2(A
c) = 0, so we conclude that

convergence in (4.2) holds almost surely with respect to Q1 and Q2, so by
ergodic theorem,

�

Ω
f(ω)P(dω) = EQ1[f |I], Q1-a.s.
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Integrating this identity with respect to Q1 we obtain
�

Ω
f(ω)P(dω) =

�

Ω
f(ω)Q1(dω),

and since f was an arbitrary bounded measurable function, we conclude
that P = Q1. Similarly, we obtain P = Q2, so P is an extreme point. �

In general, every θ-invariant probability measure can be represented as
a mixture of ergodic θ-invariant measures:

(4.3) P =

�

E
Pµ(dP),

where µ is a measure on E, the set of all ergodic measures. In the remainder
of this section we will make sense of this statement, but let us first consider
the following example. Let θ be a rotation of the cylinder S1 × R1 by an
irrational angle α:

θ(x, y) = ({x + α}, y).

Since for every y ∈ R, the circle S1×{y} is invariant, every ergodic measure
has to be concentrated on one of the circles. Restricted to any circle, θ act
as a circle rotation, so for every y ∈ R, the measure Leb×δy is a unique
invariant measure on S1 × {y} and it is ergodic under θ. We see that all
ergodic measures are indexed by y ∈ R, and representation (4.3) may2 be
interpreted as

P(A) =

�

y∈R
µ(dy) Leb(Ay),

where Ay = {x ∈ S1 : (x, y) ∈ A} for every y ∈ R. In other words, an
invariant measure distributes the mass over multiple fibers (ergodic compo-
nents), but within individual fibers, the mass is distributed according to an
ergodic measure.

One could use an abstract Choquet theorem that says that every point
of a compact convex subset of a locally convex topological vector space can
be represented as a mixture (integral convex combination) of its extreme
points. We will take another, more general and constructive approach. We
follow [Sar09] and [EW11].

Definition 4.1. A σ-algebra G is countably generated if G = σ(Ek, k ∈
N) for some countable family of sets Ek ∈ F, k ∈ N.

Definition 4.2. For two σ-algebras G,H, we write G
P
= H if for every

set A ∈ G there is a set B ∈ H such that P(A�B) = 0, and for every set
A ∈ H there is a set B ∈ G such that P(A�B) = 0.

Theorem 4.4. (1) Let P be a probability measure on a Borel space
(Ω,F) and let G ⊂ F be a σ-algebra on Ω. Then there is a set
Ω� ∈ G satisfying P(Ω�) = 1 and a probability kernel PG(·, ·) from
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(Ω�, G) to (Ω,F) with the following property: if X ∈ L1(Ω,F, P),
then

(4.4) E(X|G)(ω) =

�

Ω
X(σ)PG(ω, dσ), ω ∈ Ω�.

(2) Suppose additionally G is countably generated. Then the set Ω� in
the first part of this theorem can be chosen so that for all ω ∈ Ω�,
PG(ω, [ω]G) = 1, where

[ω]G =
�

A:ω∈A∈G

A

is the atom of G containing ω. Moreover, if ω1, ω2 ∈ Ω� and [ω1]G =
[ω2]G, then PG(ω1, ·) = PG(ω2, ·).

(3) If H ⊂ F is another σ-algebra such that G
P
= H, then PG(ω, ·) =

PH(ω, ·) for almost all ω.

Remark 4.1. The kernel P is called regular conditional probability with
respect to G, see [Shi96, Section II.7]

Proof: Using the definition of Borel spaces, we can assume that Ω is a
compact segment of R and F is a restriction of Borel σ-algebra onto Ω.
Under this assumption we can find a dense countable set in C(Ω). The
vector space R generated by this set over Q is also a countable set. For
every Y ∈ R, we can find a version G[Y ] of E(Y |G). Let us now consider
the following countable set of conditions:

(1) G[pY + qZ](ω) = pG[Y ](ω) + qG[Z](ω), p, q ∈ Q, Y, Z ∈ R.
(2) min Y ≤ G[Y ](ω) ≤ maxY , Y ∈ R.

Each of these conditions is violated on an exceptional set of zero measure
belonging to G. Since there are countably many of these conditions, there is
a set A ∈ G such that P(A) = 1 and all the conditions above are satisfied for
all ω ∈ A. In particular, for each ω ∈ A, the functional Y �→ G[Y ](ω) is a
linear functional on R over Q, with norm bounded by 1. So, this functional
can be extended by continuity to a continuous linear functional on C(Ω)
over R, in a unique way. Such functionals can be identified with measures
by Riesz’s theorem (reference????). Thus for each ω ∈ A, we obtain a
measure PG(ω, ·) on (Ω,F, P). This measure satisfies

(4.5)

�

Ω
Y (σ)PG(ω, dσ) = G[Y ](ω), ω ∈ A, Y ∈ C(Ω).

In particular the left-hand side of this identity is a G-measurable function
for every Y ∈ C(Ω).

To see that for every B ∈ F, PG(·, B) is a G-measurable function it is suf-
ficient to represent indicators 1B as pointwise limits of continuous uniformly
bounded functions Yn, because then by dominated convergence,

PG(ω,B) = lim
n→∞

�

Ω
Yn(σ)PG(ω, dσ),
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and a limit of G-measurable functions is a G-measurable function.
Let A be the collection of sets such that their indicators can be repre-

sented as pointwise limits of continuous uniformly bounded functions. Then
A is a set algebra and a monotone class (see [Shi96, Section II.2] for these
notions). Therefore it is a σ-algebra. Since A contains open sets, it coincides
with Borel σ-algebra. Therefore, our claim that for every B ∈ F, PG(·, B)
is a G-measurable function hods true.

Problem 4.1. Let X ∈ L1(Ω,F, P). Prove that there is a sequence

Xn ∈ C(Ω), n ∈ N such that X
a.s.
=

�∞
n=1 Xn and

�∞
n=1 �Xn�L1(Ω,F,P) < ∞.

Using this problem, we can write

E(X|G)(ω)
a.s.
=

∞�

n=1

E(Xn|G)(ω)
a.s.
=

∞�

n=1

�

Ω
Xn(σ)PG(ω, dσ)

a.s.
=

�

Ω

∞�

n=1

Xn(σ)PG(ω, dσ)
a.s.
=

�

X(σ)PG(ω, dσ).

The first identity holds since conditional expectation is a continuous linear
operator in L1. The second identity follows from (4.5) and continuity of Xn.
The last identity follows from the definition of Xn, so it remains to explain
the change of order of integration and summation in the third identity. This
will be justified if we can prove that

�
Ω

�∞
n=1 |Xn(σ)|PG(ω, dσ) is a.s.-finite.

This will follow from

(4.6) E

�

Ω

∞�

n=1

|Xn(σ)|PG(ω, dσ) < ∞.

Identity

E

�

Ω
Y (σ)PG(ω, dσ) = EY

holds for all Y ∈ R by definition and thus for all Y ∈ C(Ω), so we use it
along with the monotone convergence theorem to see that the left-hand side
of (4.6) equals

lim
m→∞

E

�

Ω

m�

n=1

|Xn(σ)|P (ω, dσ) ≤ lim
m→∞

m�

n=1

E|Xn(σ)| ≤

∞�

n=1

�Xn�L1 < ∞,

which completes the proof of part 1 with Ω� = A. We will need to adjust Ω�

in the proof of part 2 that follows. First,

P(Ei|G)(ω)
a.s.
= 1Ei(ω)

a.s.
= PG(ω,Ei), i ∈ N,

where P(Ei|G)(ω)
a.s.
= 1Ei(ω) follows by definition of conditional expectation,

and P(Ei|G)(ω)
a.s.
= PG(ω,Ei) is a specific case of (4.4).
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Let N ⊃ Ac be the union of all exceptional sets in this identity for i ∈ N.
Then for all i ∈ N,

(4.7) PG(ω,Ei) =






1, ω ∈ Ei ∩ N
c,

0, ω ∈ Eci ∩ N
c,

?, ω ∈ N.

Under the conditions of part 2

(4.8) [ω]G =
�

i:ω∈Ei

Ei ∩
�

i:ω/∈Ei

Eci , ω ∈ Ω.

Problem 4.2. Prove representation (4.8). Deduce that [ω]G belongs
to G and, in fact, can be defined as the smallest element of G containing ω).

Identities (4.7) and (4.8) now imply PG(ω, [ω]G) = 1, ω ∈ Nc.
Since for any B ∈ F the map ω �→ PG(ω,B) is G-measurable, PG(ω1,B) =

PG(ω2,B) for any ω1, ω2 satisfying [ω1]G = [ω2]G. So part 2 holds with
Ω� = Nc.

To prove part 3, we introduce A = σ(G,H). Then we take a countable
dense set {Xn}n∈N in C(Ω) and notice that for each n ∈ N, E(Xn|G) and
E(Xn|H) are versions of E(Xn|A), so they coincide almost surely. Therefore,
there is a set Ω� of full measure such that

�

PG(ω, dσ)Xn(σ) =

�

PH(ω, dσ)Xn(σ), n ∈ N, ω ∈ Ω�.

Since measures on Ω are uniquely defined by the integrals of Xn with respect
to them, we conclude that PG(ω, ·) = PH(ω, ·) on Ω�. �

Theorem 4.5. If P is a probability measure on a Borel space (Ω,F) and
G ⊂ F is a σ-algebra, then there is a countably generated σ-algebra H such

that G
P
= H.

Proof: Using the Borel isomorphism we can assume that Ω is a compact
interval on R. Then L1(Ω,F, P) is a separable space and thus so is its
subset {1A|A ∈ G}. Therefore, there is a family (An)n∈N of sets in G such
that all sets from G are approximated by sets An with arbitrary precision.
Establishing relation

(4.9) σ(An, n ∈ N)
P
= G

will complete the proof. �

Problem 4.3. Prove relation (4.9).

Theorem 4.6. Let P be a probability measure on a Borel space (Ω,F),
invariant under a measurable transformation θ. Let PI(·, ·) be a regular
conditional probability with respect to I. Then for P-almost every ω, the
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measure PI(ω, ·) is θ-invariant and ergodic, and P is a mixture or convex
combination of those ergodic measures:

P =

�

Ω
P(dω)PI(ω, ·),

i.e.,

(4.10) P(A) =

�

Ω
P(dω)PI(ω,A), A ∈ F,

and, more generally,

(4.11) EX =

�

Ω
P(dω)

�

Ω
PI(ω, dσ)X(σ), X ∈ L1(Ω,F, P).

Proof: Checking (4.10) or (4.11) is straightforward: according to Theo-
rem 4.4,

(4.12) EX = EE(X|I) = E

�

Ω
X(σ)PI(ω, dσ), X ∈ L1(Ω,F, P).

From now on we use the Borel isomorphism to assume that (Ω,F) is
a compact segment on R with Borel σ-algebra. We choose a dense set
D = {Xn}n∈N in C(Ω).

Let us prove invariance of PI(ω, ·). By Birkhoff’s ergodic theorem, there
is a set Ω1 ∈ F such that P(Ω1) = 1, Ω1 ⊂ Ω� (where Ω� is introduced in
Theorem 4.6), and for all n ∈ N and ω ∈ Ω1,

�

Ω
PI(ω, dσ)Xn(σ) = E(Xn|I)(ω) = lim

N→∞

1

N

N−1�

k=0

Xn(θkω)

and
�

Ω
PI(ω, dσ)Xn(θσ) = E(Xn ◦ θ|I)(ω) = lim

N→∞

1

N

N−1�

k=0

Xn(θk+1ω).

Since Xn is bounded, the right-hand sides of the last two identities coincide
for ω ∈ Ω1. Since every X ∈ C(Ω) can be uniformly approximated by
functions from D, we obtain that

(4.13)

�

Ω
PI(ω, dσ)X(σ) =

�

Ω
PI(ω, dσ)X(θσ)

holds for X ∈ C(Ω) and ω ∈ Ω1. For every set B ∈ F there is a sequence
of uniformly bounded continuous functions convergent pointwise to 1B.
Bounded convergence implies that (4.13) holds for X = 1B which proves
that θ preserves PI(ω, ·) for ω ∈ Ω1.

To prove the ergodicity part of the theorem, we will need the following
statements:
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Lemma 4.1. Let (Ω,F, P, θ) be a metric dynamical system, where (Ω,F)
is a compact subset of R with Borel σ-algebra on it. Then ergodicity is
equivalent to the following statement: there is a countable dense set {Xn}n∈N

in C(Ω) such that

1

N

N−1�

i=0

Xn(θiω)
a.s.
−→

�

Ω
Xn(ω)P(dω).

Problem 4.4. Prove Lemma 4.1.

Lemma 4.2. Let P be a probability measure on a Borel space (Ω,F).
Let H ⊂ F be a σ-algebra on Ω and let PH(·, ·) be the regular conditional
probability with respect to H constructed in Theorem 4.4. Suppose B ∈ F
satisfies P(B) = 1. Then, for P-almost all ω ∈ Ω, PH(ω,B) = 1.

Problem 4.5. Prove Lemma 4.2

We need to prove ergodicity of almost all measures PI(ω, ·). It is suf-
ficient to prove ergodicity of almost all measures PH(ω, ·), where H is a

countably generated σ-algebra such that I
P
= H (the existence of such H

is guaranteed by Theorem 4.5). The advantage of dealing with H is that
part 2 of Theorem 4.4 applied to H = G holds on a set Ω� of full measure.

Let us construct a set of full measure P such that for ω from that set,
(Ω,F, PH(ω, ·), θ) satisfies the ergodicity criterion provided by Lemma 4.1.

Using Birkhoff’s ergodic theorem we can find Ω2 ⊂ Ω1 such that P(Ω2) =
1 and for ω ∈ Ω2 and any n ∈ N

1

N

N−1�

i=0

Xn(θiω) →

�

Ω
PH(ω, dσ)Xn(σ), N → ∞.

This, along with Lemma 4.2, implies that there is a set Ω3 ⊂ Ω2 such that
P(Ω3) = 1 and for all ω ∈ Ω3, PH(ω,B) = 1, where

B =

�

ζ :
1

N

N−1�

i=0

Xn(θiζ) →

�

Ω
PH(ζ, dσ)Xn(σ), N → ∞, n ∈ N

�

.

Applying Lemma 4.2 to Ω3, we obtain that there is Ω4 ⊂ Ω3 with PH(ω,Ω3) =
1 for all ω ∈ Ω4.

Since Ω3 ⊂ Ω�, we have PH(ω, [ω]H) = 1 for ω ∈ Ω3 (see part 2 of
Theorem 4.6). So, PH(ω, [ω]H ∩B∩Ω3) = 1 for ω ∈ Ω4. On the other hand,
since ω �→

�
PH(ω, dσ)Xn(σ) is H-measurable, we have

�

Ω
PH(ζ, dσ)Xn(σ) =

�

Ω
PH(ω, dσ)Xn(σ)

if ω, ζ ∈ Ω� and ζ ∈ [ω]H.
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So, if ω ∈ Ω4, then for every ζ ∈ [ω]H ∩ B ∩ Ω3 (which is a PH(ω, ·)-full
measure set), we have

1

N

N−1�

i=0

Xn(θiζ) →

�

Ω
PH(ω, dσ)Xn(σ), N → ∞.

We see that the criterion of Lemma 4.1 is satisfied, so measures PH(ω, ·) are
ergodic for ω ∈ Ω4. �

3. Absolutely continuous invariant measures

Suppose now that Ω = (Rd, B(Rd)) and θ is a differentiable transforma-
tion. In some cases it is reasonable to expect that there is an absolutely
continuous invariant measure P for θ. Absolute continuity of P with respect
to Lebesgue measure means that there is an L1(Rd, B(Rd), Leb) function ρ
called density such that for any set B ∈ B(Rd),

P(B) =

�

B
f(ω)dω.

Densities are not uniquely defined since they can be modified on a zero
measure set.

In what follows, for a differentiable function f : Rm → Rn we denote by
Df(x) the Jacobi matrix of f at point x: (∂if

j(x))i=1,...,m
j=1,...,n

.

Theorem 4.7. Let P(dx) = ρ(x)dx be a measure on (Rd, B(Rd)). Sup-
pose θ : Rd → Rd is differentiable and nondegenerate for almost all x (the
latter means Leb{x : detDθ(x) = 0} = 0). Then Pθ−1 is also absolutely
continuous with respect to Lebesgue measure and the so called transfer op-
erator or Perron–Frobenius operator L applied to ρ:

(4.14) Lρ(x) =
�

y∈θ−1x

ρ(y)

| detDθ(y)|
, x ∈ Rd,

gives a density of Pθ−1. Here we adopt the usual convention that summation
over an empty set is zero.

Since densities that differ only on a set of zero measure define the same
measure, it makes sense to consider their equivalence classes and look at
the transfer operator as a transformation in L1 understood as a space of
equivalence classes.

In particular, we have the following statement.

Theorem 4.8. Under the conditions of Theorem 4.7, an absolutely con-
tinuous measure P is invariant under transformation θ if and only if identity

(4.15) Lρ(x) = ρ(x)

holds for Leb-almost all x ∈ Rd. In other words, ρ is a fixed point of the
transfer operator L or, equivalently, its eigenfunction with eigenvalue 1.
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So, the problem of finding invariant densities for smooth maps reduces
to solving equation (4.15). Although this equation looks quite innocent,
in many concrete cases establishing existence of solutions of (4.15), finding
these solutions and exploring their properties poses difficult problems.

Sometimes one can derive existence using conjugation to well-studied
dynamical systems. For example, the following is a slightly weakened state-
ment of Denjoy’s theorem (1932):

Theorem 4.9. Let θ : S1 → S1 be an orientation preserving C2-diffeomorphism
with no periodic points. Then there is α ∈ R \Q such that θ is continuously
conjugated to θα defined by

θα(ω) = ω + α.

Continuous conjugation means that there is a homeomorphism φ : S1 →
S1 such that

θ = φ−1 ◦ θα ◦ φ.

Let us make an additional assumption that the conjugation map φ is,
in fact, a diffeomorphism. Then, since the Lebesgue measure is a unique
invariant probability measure for θα, we can construct a unique invariant
probability measure for θ as the pushforward of Lebesgue measure under φ.
This measure is absolutely continuous due to the diffeomorphism property
of θ.

There is a series of papers where various sufficient conditions for φ to
satisfy various smoothness conditions are established. It turns out that
there is a set A of full Lebesgue measure such that for all α ∈ A and
every orientation preserving diffeomorphism continuously conjugated to θα,
the conjugation is, in fact, a diffeomorphism. The set A can be described
in number-theoretic terms, namely, via the rate of approximation of α by
rational numbers, see, e.g. [KT09]

Let us look at one concrete example known as the Gauss map. Let d = 1
and θx = {1/x} for x ∈ R1. Let us check that the function

ρ(x) =

�
1

ln 2(1+x) , x ∈ [0, 1),

0, otherwise

is an invariant probability density. Ignoring the normalizing constant 1/ ln 2,
noticing that θ−1x = {1/(x+m) : m ∈ N}, and computing |θ�(1/(x+m))| =
(x +m)2, we see that we need to check

ρ(x) =
�

m∈N

ρ
�

1
x+m

�

(x +m)2
, x ∈ [0, 1).
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The right-hand side equals
�

m∈N

1

1 + 1
x+m

1

(x +m)2
=

�

m∈N

1

(x +m+ 1)(x +m)

=
�

m∈N

�
1

x +m
−

1

x +m+ 1

�

=
1

1 + x
= ρ(x).

Problem 4.6. Suppose an open set U ⊂ Rd, a point x0 ∈ U, and a map
θ : Rd → Rd satisfy limn→∞ θ

nx = x0 for all x ∈ U. Then every absolutely
continuous invarant measure µ must satisfy µ(U) = 0.

Problem 4.7. Suppose a differentiable map θ : Rd → Rd satisfies |Dθ(x)| <
1 for all x in a bounded open forward invariant set U. Then every absolutely
continuous invarant measure µ must satisfy µ(U) = 0.

One can interpret these results as nonexistence of absolutely continuous
invariant measures due to “deregularizing” properties of the transfer opera-
tor L. Namely, due to contraction in the phase space, under the iterations
of L the densities become large and tends to abnormally concentrate. In
fact, in situations where L is sufficiently regularizing or smoothening, one
can prove existence.

Theorem 4.10 (A. Rényi, 1953). Suppose (Ω,F) = ([0, 1), B). Let m ∈
N, m > 1 and f : [0, 1] → [0,m] satisfies f(0) = 0, f(1) = m and f�(x) > 1
for all x ∈ [0, 1]. Then the transformation θ defined by θx = {f(x)} has an
absolutely continuous invariant measure. If f ∈ Cr for some r ≥ 2, then
the invariant density has a Cr−1 version.

Theorem 4.11 (A. Lasota and J. A. Yorke, 1973). Let θ : [0, 1] → [0, 1]
be a piecewise C2 function such that inf |θ�| > 1. Then there is a θ-invariant
measure absolutely continuous with respect to Lebesgue measure and such
that its density has a version with bounded variation.

Idea of the proof: It turns out that the following “Lasota–Yorke”
inequality holds. There are numbers N ∈ N, α > 0 and β ∈ (0, 1) such that
for every f with bounded variation V (f),

V (LNf) ≤ α�f�L1 + βV (f).

So, taking any f ≥ 0 and denoting fk = Lkf, we obtain

V (fNk) ≤ α�fN(k−1)�L1 + βV (fN(k−1)) ≤ α�f�L1 + βV (fN(k−1)),

where we used the fact that if f ≥ 0 and f ∈ L1, then Lf ≥ 0 and �Lf�L1 =
�f�L1. Iterating this inequality, we obtain

V (fNk) ≤ α(1 + β + β2 + . . . + βk−1)�f�L1 + βkV (f).

Therefore,
lim sup
k→∞

V (fNk) ≤ α(1 − β)−1�f�L1,
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This along with �fk�L1 ≤ �f�L1 guarantees that C = {fNk}k∈N is pre-
compact in L1 (see [DS88, Theorem IV.8.20]). Therefore, {fk}k∈N is also
precompact. Mazur’s theorem (see [DS88, Theorem V.2.6]) says that in
Banach spaces precompactness of a set is equivalent to precompactness of
its convex hull, so the set {gn}n∈N, where

gn =
1

n

n−1�

k=0

Lkf, n ∈ N

is also relatively compact. So let us choose a convergent subsequence gnk

L1

→ g
and notice that

Lgnk
− gnk

=
1

n
(Lnkf − f)

L1

→ 0, k → ∞.

Since L is a continuous operator in L1, we conclude that Lg = g. �

Remark 4.2. For many interesting systems, in the absence of absolutely
continuous invariant distributions one can still define various relevant physi-
cal invariant measures. Examples of such distributions are measures of max-
imal entropy, Sinai–Ruelle–Bowen (SRB) measures. We refer to [Wal82,
Chapters 8–9] and [Bal00, Chapter 4]. This remark may need extending.





CHAPTER 5

Markov Processes

The goal of this chapter is to develop general ergodic theory of stochastic
processes with instantaneous loss of memory.

1. Basic notions

Here we begin studying situations where the state of the system at time
n + 1 is not uniquely determined by the state at time n. We will mostly be
interested in processes with instantaneous loss of memory. They are usually
called Markov processes and are defined by the following property: given
the history of the process X up to time n, the state at time n+ 1 is random
and has conditional distribution that depends only on the value Xn.

Definition 5.1. Let (X, X ) be a measurable space. A function P :
X×X → R is called a transition probabiliy, or transition kernel, or probability
kernel if for each x ∈ X, P (x, ·) is a probability measure, and for each B ∈ X ,
P(·, B) is an X -measurable function.

Throughout this section we assume that (X, X ) is a Borel space. We
also fix a transition kernel P (·, ·) on (X, X ).

For any measure ρ on (X, X ) (that will serve as the initial distribution)
and time n ∈ Z, we are going to define a measure on path starting at n, i.e.,
on the space (X{n,n+1,...}, X {n,n+1,...}).

Definition 5.2. Let (X, X ) be a Borel space. Let ρ be a probability
measure on a (X, X ) and let P (·, ·) be a transition kernel on (X, X ). An
(X, X )-valued process X defined on a probability space (Ω,F, P) with time
indexed by {n, n + 1, n + 2, . . .} for some n ∈ Z is called a homogeneous
Markov process with initial distribution ρ and one-step transition probability
P (·, ·) if for any k ≥ 0 and any sets A0,A1, . . . , Ak ∈ X ,

(5.1) P{Xn ∈ A0, . . . ,Xn+k ∈ Ak}

=

�

A0

ρ(dx0)

�

A1

P(x0, dx1) . . .

�

Ak−2

P (xk−2, dxk−1)

�

Ak−1

P (xk−1,Ak).

The existence and uniqueness of a measure P = Pn,∞ρ on the canoni-

cal space (X{n,n+1,...}, X {n,n+1,...}) with finite-dimensional distributions de-
scribed by (5.1) follows from the Kolmogorov–Daniell consistency theorem.

Problem 5.1. Show that formula (5.1) defines a consistent family of finite-
dimensional distributions.

51
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Problem 5.2. Show that Definition 5.2 is equivalent to the following: for any
m ∈ N and any bounded and (Xn, B(R))-measurable function f : Xm+1 → R,

(5.2) Ef(Xn, . . . ,Xn+m)

=

�

X

ρ(dx0)

�

X

P(x0, dx1) . . .

�

X

P(xm−1, dxm)f(x0, . . . , xm).

It is convenient to work on the canonical probability space. For any
n ∈ Z, the canonical random variables Xm on (X{n,n+1,...}, X {n,n+1,...}) are
defined by Xm(xn, xn+1, . . . , ) = xm, m ≥ n.

In what follows we most often work with the case where n = 0. If n = 0,
we will often write Pρ for Pn,∞ρ . Also, if ρ = δy for some y ∈ X, we write Py
for Pδy .

For any numbers m1,m2 ∈ Z such that m1 ≤ m2 we denote

Xm1m2 = σ(Xm1, . . . ,Xm2).

Let us also denote Fm = X0m and Xm∞ = σ(Xm,Xm+1, . . .) for any m ≥ 0.
It is clear from the definition (5.1), that ρ is the distribution of X0

under Pρ, i.e., Pρ{X0 ∈ A} = ρ(A) for every A ∈ X . Thus, the measure
ρ can be interpreted as the starting distribution of the Markov process.
Let us convince ourselves that the function P(·, ·) can be interpreted as a
conditional transition probability.

Theorem 5.1 (Markov property). For any m ∈ Z+ and A ∈ X.

Pρ(Xm+1 ∈ A|Fm)
a.s.
= Pρ(Xm+1 ∈ A|Xm)

a.s.
=P(Xm,A).

Proof: It is sufficient to prove that for any m and any measurable bounded
function f : Xm+1 → R,

EP(Xm,A)f(X0, . . . ,Xm) = E1Xm+1∈Af(X0, . . . ,Xm).

To prove this formula, we can directly compute both sides of this identity
using (5.2). �

Theorem 5.2. For any measure ρ, any m, k ≥ 0 and any A1, . . . , Ak ∈
X ,

Pρ(Xm+1 ∈ A1, . . . ,Xm+k ∈ Ak|Fm)
a.s.
= Pρ(Xm+1 ∈ A1, . . . ,Xm+k ∈ Ak|Xm)

a.s.
=

�

A1

P(Xm, dx1)

�

A2

P(x1, dx2) . . .

�

Ak−2

P (xk−2, dxk−1)

�

Ak−1

P (xk−1,Ak)

a.s.
= Pm∞Xm

{Xm+1 ∈ A1, . . . ,Xm+k ∈ Ak}.

Proof: To be inserted later �
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Theorem 5.3. For any measure ρ, any m, k ≥ 0, any A0,A1, . . . , Ak ∈
X ,

Pρ(Xm ∈ A0, . . . ,Xm+k ∈ Ak|Fm)
a.s.
= Pρ(Xm ∈ A0, . . . ,Xm+k ∈ Ak|Xm)

a.s.
= 1Xm∈A0

�

A1

P(Xm, dx1)

�

A2

P(x1, dx2) . . .

�

Ak−2

P (xk−2, dxk−1)

�

Ak−1

P (xk−1,Ak)

a.s.
= Pm∞Xm

(Xm ∈ A0, . . . ,Xm+k ∈ Ak).

Proof: This follows directly from the previous theorem and the fact that
1Xm∈A0 is σ(Xm)-measurable �

Theorem 5.4. For any measure ρ, any m, k ≥ 0, and any bounded
measurable f : X k+1 → R,

EPρ(f(Xm, . . . ,Xm+k)|Fm)
a.s.
= EPρ(f(Xm, . . . ,Xm+k|Xm))

a.s.
=

�

X
P(Xm, dx1)

�

X
P(x1, dx2) . . .

�

X
P(xk−2, dxk−1)

�

X
P(xk−1, dxk)f(Xm, x1, . . . , xk).

a.s.
= EPm∞

Xm
f(Xm, x1, . . . , xk).

Proof: To be inserted later �

In the following theorem we use the standard shift operator θ on (XZ+,X Z+).

Theorem 5.5. Let m ≥ 0, and let A ∈ XZ+. Then

Pρ(θ
−mA|Fm)

a.s.
= Pρ(θ

−mA|Xm)
a.s.
= PXm(A).

Proof: If A ∈ XZ+, then

θ−mA = {(x0, x1, . . .) : (xm, xm+1, . . .) ∈ A} ∈ Xm∞.

The theorem follows from approximating θ−mA by cylinder sets based on
coordinates starting with the m-th one, and using Theorem 5.4. �

One can easily priove an extension of this theorem where indicators are
replaced by arbitrary bounded functions:

Theorem 5.6. Let m ≥ 0, and let H : XZ+ → R be a bounded random
variable. Then

EPρ(H ◦ θm|Fm)
a.s.
= EPρ(H ◦ θm|Xm)

a.s.
= EPXm

H.

For example, for every set B ∈ XZ+,

(5.3) Pρ(B) =

�

X
ρ(dx0)Px0(B).

This identity follows from

Pρ(B) = EPρ1B = EPρEPρ(1B|F0) = EPρPX0(B) =

�

X
ρ(dx0)Px0(B).
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We already know that the distribution of X0 under Pρ is fiven by ρ.
Using (5.1), we can also compute the distribution of X1,

Pρ{X1 ∈ A} =

�

X
ρ(dx0)P (x,A).

It is convenient to introduce additional notation: for a mesaure ρ on (X, X )
and a kernel on (X, X ), we define the measure ρP by

(5.4) ρP(A) =

�

X
ρ(dx0)P (x,A).

Using this notation we can say that the distribution of X1 is given by
ρP .

Also, for two kernels P (·, ·) and Q(·, ·), we can define a new kernel
PQ(·, ·) by

PQ(x0,A) =

�

X
P(x0, dx1)Q(x1,A), x ∈ X, A ∈ X ,

we also can inductively introduce P0(x0, ·) = δx0 and

Pn+1 = PnP = PPn, n ∈ N.

With this notation at hand, we can also write

Pρ{Xn ∈ A} = ρPn(A), A ∈ X , n ∈ N.

In the simplest case where X = {1, . . . , N} for some N ∈ N, the tran-
sition kernel can be identified with transition probability matrix Pij =
P(i, {j}), i, j = 1, . . . , N. Then the formulas above can be interpreted via
matrix products.

2. Stationary Markov Processes and Invariant Distributions

Suppose now we would like to study statistical properties of the Markov
process (Xm)m≥0. We already know that if a process (Xm) is stationary,
then one can view it as a metric dynamical system (XZ+, XZ+, P, θ) and
apply the ergodic theorem to compute limits of averages like

1

n

n−1�

k=0

f(Xk).

So the first question one could ask is, given the transition probability
P(·, ·), what are the initial distributions ρ such that Pρ defines a stationary
process?

Theorem 5.7. Pρ defines a stationary process iff

(5.5) ρP = ρ,
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Proof: If Pρ defines a stationary process, then the distributions of X0 and
X1 must coincide, so (5.5) holds.

Now suppose that (5.5) holds. Then for all m, we have ρPm = ρ, i.e.,
the distribution of Xm is also ρ.

We need to check that for all m ∈ Z+, all k ∈ N,

(5.6) Pρ{Xm ∈ A0, . . . ,Xm+k ∈ Ak} = Pρ{X0 ∈ A0, . . . ,Xk ∈ Ak}.

We can write

Pρ{Xm ∈ A0, . . . ,Xm+k ∈ Ak} =

=EPρPρ(Xm ∈ A0, . . . ,Xm+k ∈ Ak|Xm)

=EPρ1Xm∈A0Pρ(Xm+1 ∈ A1, . . . ,Xm+k ∈ Ak|Xm)

=EPρ1Xm∈A0

�

A1

P(Xm, dx1)

�

A2

P(x1, dx2) . . .

�

Ak−2

P (xk−2, dxk−1)

�

Ak−1

P (xk−1,Ak).

Denoting for y ∈ X

f(y) = 1x∈A0

�

A1

P(y, dx1)

�

A2

P(x1, dx2) . . .

�

Ak−2

P (xk−2, dxk−1)

�

Ak−1

P (xk−1,Ak),

we can write

Pρ{Xm ∈ A0, . . . ,Xm+k ∈ Ak} = EPρf(Xm) =

�

X
ρ(dy)f(y),

since the distribution of Xm is ρ. This expression on the right-hand side
does not depend on m, so the proof of (5.6) is complete. �

Definition 5.3. Any distribution ρ that satisfies (5.5) is called P -invariant.

If X is finite, say X = {1, . . . , N} for some N ∈ N, then any measure ρ
and any transition kernel P are uniquely defined by their values on single-
point sets. Denoting ρi = ρ{i} and Pij = P(i, {j}) for all i, j ∈ X, we obtain
that ρ is P -invariant iff

(5.7)
�

i∈X

ρiPij = ρj.

In other words, the identity ρP = ρ can be understood in the linear algebra
sense. Here ρ is a row vector and P is a square matrix.

For example, let X = {1, 2, 3} with X = 2X, and P(x,A) = |A \ {x}|/2
for any A ⊂ X which means that, given that at any time step the system
changes its current state to a new one chosen uniformly from the remaining
two states. Denoting

Pij = P(i, {j}) =

�
1
2, j �= i,

0, j = i,

we see that the system (5.7) has a line of solutions ρ1 = ρ2 = ρ3. Since we
are interested in probability measures, we have to set ρ1 = ρ2 = ρ3 = 1/3,
and so this transition kernel has a unique invariant distribution.
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Another example. Let us consider the following probability kernel on
the real line:

P (x,A) =
1

2
δx

2
(A) +

1

2
δ1+x

2
(A), x ∈ R.

In terms of Markov processes, this means that between times n and n + 1
the process jumps from Xn to either Xn/2 or (1 + Xn)/2, and these values
are each chosen with probability 1/2.

Let us check that the uniform distribution on [0, 1] is P -invariant. Let
us take any Borel A ⊂ [0, 1] and compute
�

[0,1]
P (x,A)dx =

1

2

�

[0,1]
1A(x/2)dx +

1

2

�

[0,1]
1A((1 + x)/2)dx

=
1

2
Leb

�
x ∈ [0, 1] :

x

2
∈ A

�
+

1

2
Leb

�

x ∈ [0, 1] :
1 + x

2
∈ A

�

=
1

2
Leb((2A) ∩ [0, 1]) +

1

2
Leb((2A − 1) ∩ [0, 1])

= Leb(A ∩ [0, 1/2]) + Leb(A ∩ [1/2, 1]) = Leb(A).

In fact, there are no other invariant distributions, but checking this is
not so easy as in the first example.

Problem 5.3. Use binary decompositions of numbers in [0, 1] to give another
proof of invariance of the uniform distribution in this example.

Problem 5.4. Find an invariant distribution for the following probability
kernel on the real line:

P (x,A) =
1

2
δx

3
(A) +

1

2
δ2+x

3
(A), x ∈ R.

Let us consider another example on the real line. Let us fix two param-
eters a ∈ (0, 1) and σ2 > 0 and suppose that P(x, ·) is a Gaussian measure
with mean ax and variance σ2. Let us find a number r2 > 0 such that a
centered Gaussian distribution with variance r2 is invariant. We need to
make sure that for any Borel A ⊂ R,

�

A

dx
√

2πr
e−

x2

2r =

�

R

dx
√

2πr
e−

x2

2r

�

A

dy
√

2πσ
e−

(y−ax)2

2σ2 .

After a change of variables ax = z, the right-hand side becomes
�

R

dx
√

2πra
e−

z2

2r2a2

�

A

dy
√

2πσ
e−

(y−z)2

2σ2 =

�

A
p(y)dy,

where p is the convolution of densities of two centered Gaussian distribu-
tions with variances r2a2 and σ2, i.e., p is a centered Gaussian density with
variance r2a2 + σ2. So we will have an invariant Gaussian distribution if
and only if r2 = r2a2 + σ2, i.e., r2 = σ2/(1 − a2). We will prove later that
there are no other invariant distributions for this Markov semigroup.

Now we address the structure of the set of invariant measures.
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We already know that deterministic transformations can fail to have any
invariant distributions at all. The same applies to Markov transition ker-
nels. In fact, any deterministic transformation φ on a space (X, X ) naturally
generates a Markov transition kernel given by P(x, ·) = δφ(x), i.e., for any

measure ρ on (X, X ), ρP = ρφ−1. So basic examples of deterministic trans-
formations without invariant distributions naturally generate examples of
Markov kernels without invariant distributions.

If the set of invariant distributions for P is nonempty, then it has a
structure similar to that of the set of invariant measures for deterministic
transformations. To make more concrete statements we need to introduce
several new notions.

Definition 5.4. Let P (·, ·) be a probability kernel on (X, X ) and let ρ
be a P -invariant probability measure on (X, X ). A set A is called (P, ρ)-
invariant if

ρ{x ∈ A : P(x,Ac) > 0} = 0.

The set of all (ρ, P )-invariant sets is denoted by I(ρ, P ).

Lemma 5.1. Let P (·, ·) be a probability kernel on (X, X ) and let ρ be a
P -invariant probability measure on (X, X ). The set I(ρ, P ) is a σ-algebra.

Proof: It is obvious that Ω ∈ I(ρ, P ) since P(x,Ω) = 1 for all x.
If A1,A2, . . . ∈ I(ρ, P ), then for A =

�
i∈NAi, we have

ρ{x ∈ A : P(x,Ac) > 0} ≤
�

i

ρ{x ∈ Ai : P (x,Ac) > 0}

≤
�

i

ρ{x ∈ Ai : P (x,Aci ) > 0} = 0.

Suppose now A ∈ I(ρ, P ). Let us prove that Ac ∈ I(ρ, P ). We have

ρ(A) =

�

X
ρ(dx)P(x,A) =

�

A
ρ(dx)P(x,A) +

�

Ac

ρ(dx)P(x,A).

The first term on the right equals ρ(A) because for ρ-almost all x ∈ A,
P(x,A) = 1. Therefore, the second term is zero, which implies that P(x,A) =
0 for ρ-almost all x ∈ Ac. �

Definition 5.5. Let P (·, ·) be a probability kernel on (X, X ) and let ρ
be a P -invariant probability measure on (X, X ). We say that the pair (ρ, P )
is ergodic if for every (ρ, P )-invariant set A, ρ(A) ∈ {0, 1}.

Ergodicity means that one cannot decompose the system into two sys-
tems that can be studied independently. We will also often say that ρ is
P -ergodic if (ρ, P ) is an ergodic pair.

Theorem 5.8. Suppose ρ is an invariant measure for a Markov kernel
P (·, ·) on (X, X ). A set B ∈ XZ+ belongs to the σ-algebra I∗(XZ+, X Z+, Pρ, θ)
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iff there is A ∈ I(ρ, P ) such that

(5.8) B
Pρ
= {X0 ∈ A} = A× X × X × . . . = A × XN.

If A ∈ I(ρ, P ), then condition (5.8) is equivalent to

(5.9) B
Pρ
= {X0 ∈ A,X1 ∈ A, . . .} = A × A×A× . . . = AZ+.

Also Pρ(B) = ρ(A).

Proof: First, let us prove the equivalence of conditions (5.8) and (5.9).

For all n ∈ Z+, we introduce Bn = A{0,1,...,n} × X{n+1,n+2,...}. Then

Pρ(Bn) =

�

A
ρ(dx0)

�

A
P(x0, dx1) . . .

�

A
P(xk−1,A) = ρ(A),

due to the invariance of A. Since Bn+1 ⊂ Bn for all n, and
�
n∈Z+

Bn = AZ+,

we obtain Pρ(A
Z+) = ρ(A). Since B0 = A × XN and Pρ(B0) = ρ(A), we

have AZ+
Pρ
= A × XN.

To see that A ∈ I(ρ, P) implies AZ+
∈ I∗(XZ+,X Z+, Pρ, θ), we can either

use the forward invariance of A under θ, or write

θ−1AZ+ = X ×AN = AZ+ ∪ (Ac × AN)

and notice that Pρ(A
c × AN) = 0.

Now let us assume that B = θ−1B. We have

Pρ(B|Fn)
a.s.
−→Pρ(B|XZ+)

a.s.
= 1B,

since the sequence Pρ(B|Fn), n ∈ Z+, forms a bounded martingale with
respect to the filtration (Fn)n∈Z+, ∪nFn = X Z+, and Doob’s convergence
theorem applies.

On the other hand, the invariance of B and the Markov property (more
precisely, Theorem 5.5) imply that for all n ∈ Z+:
(5.10)

Pρ(B|Fn)
a.s.
= Pρ(θ

−nB|Fn)
a.s.
= Pρ(θ

−nB|Xn)
a.s.
= PXn(B) = φ(Xn) = f(θnx).

for some measurable functions φ : X → [0, 1] and f : XZ+ → [0, 1]. These
functions do not denpend on n.

We claim that

(5.11) f(x)
a.s.
= 1B(x).

This will follow from

f(x)1B(x)
a.s.
= 1B(x),(5.12)

f(x)1Bc(x)
a.s.
= 0.(5.13)

To prove these identities, we will combine (5.10) with the fact that if for

uniformly bounded random variables (ξn)n≥0 and η, ξn
a.s.
−→η, then ξn1C

L1

−→
η1C for any event C. Specifically, we can write

(5.14) f(θnx)1B(x)
L1

−→ 1B(x) · 1B(x) = 1B(x),
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and

(5.15) f(θnx)1Bc(x)
L1

−→ 1B(x) · 1cB(x) = 0.

Using the invariance of B, we can rewrite (5.14) and (5.15) as

(5.16) f(θnx)1B(θx)
L1

−→ 1B(x),

and

(5.17) f(θnx)1Bc(θx)
L1

−→ 0,

Since
EPρf(θnx)1B(θx) = EPρf(x)1B(x),

the convergence (5.16) implies EPρf(x)1B(x) = EPρ1B(x), and (5.12) fol-
lows. Since

EPρf(θnx)1Bc(θx) = EPρf(x)1Bc(x),

the convergence (5.17) implies EPρf(x)1B(x) = 0, and (5.13) follows. The
proof of (5.11) is completed, and (5.10) is established.

We can now use (5.10) to write 1B
a.s.
= φ(Xn) for all n ∈ Z+. We see

that φ takes values 0 and 1 with probability 1. Therefore, φ(Xn) = 1Xn∈A

for a set A ∈ X . So, B
Pρ
= {Xn ∈ A} for all n ∈ Z+ and, moreover,

B
Pρ
=

�
{Xn ∈ A} = AZ+.

Let us prove that A is (ρ, P )-invariant. We have
�

A
ρ(dx0)P (x0,A) = Pρ{X0 ∈ A,X1 ∈ A} = Pρ(B) = P{X0 ∈ A} = ρ(A).

Therefore, P (x0, A) = 1 for ρ-a.e. x0 ∈ A. �

Definition 5.6. Let us denote by I0 the σ-subalgebra of X Z+ generated
by sets {X0 ∈ A}, A ∈ I(ρ, P ).

Remark 5.1. Theorem 5.8 may be interpreted as

(5.18) I(XZ+, X Z+, Pρ, θ)
Pρ
= I∗(XZ+,X Z+, Pρ, θ)

Pρ
= I0.

Lemma 5.2. Let g : X → R be X -measurable and bounded. For Pρ-almost
every x ∈ X,

(5.19)

�

XZ+

Pρ,I0(x, dy)g(y0) =

�

X
ρI(x0, dy0)g(y0),

where ρI(·, ·) = ρI(ρ,P ) is a regular conditional probability with respect to
I(ρ, P ).

Proof: Since both sides of (5.19) are I0-measurable, it suffices to check
that for every B ∈ I0,

(5.20)

�

B
Pρ(dx)

�

XZ+

Pρ,I0(x, dy)g(y0) =

�

B
Pρ(dx)

�

X
ρI(x0, dy0)g(y0).
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Let us denote the left-hand side and right-hand side of (5.20) by L and R,
respectively. Let A ∈ I(ρ, P ) be the projection of B onto the zeroth coor-
dinate, i.e., let A be taken from the representation (5.8) of B.

By the definitions of conditional expectation, regular conditional prob-
ability, and of Pρ, we have

L = EPρ1B(X)g(X0) = EPρ1A(X0)g(X0) =

�

A
ρ(dx0)g(x0).

Since the integrand on the right-hand side of (5.20) depends only on x0,

R =

�

A
ρ(dx0)

�

X
ρI(x0, dy0)g(y0) =

�

A
ρ(dx0)g(x0),

where we used the definitions of conditional expectation and regular condi-
tional probability. So L = R, and the proof is complete. �

Theorem 5.9. Let ρ be an invariant distribution for a Markov kernel P
on a space (X, X ). The pair (ρ, P ) is ergodic iff (XZ+, X Z+, Pρ, θ) is ergodic.

Proof: This is a direct corollary of Theorem 5.8. �

Theorem 5.10. If (ρ1, P ) and (ρ2, P ) are ergodic and ρ1 �= ρ2, then ρ1
and ρ2 are mutually singular.

Lemma 5.3. Two finite measures ρ1 and ρ2 on (X, X ) are not mutually
singular if there are measures µ, ν1, ν2 such that µ(X) > 0 and

ρ1 = µ + ν1,(5.21)

ρ2 = µ + ν2.(5.22)

Proof: Suppose decompositions (5.21)–(5.22) hold true. Let us assume
that ρ1 and ρ2 are mutually singular, i.e., that there is a set A such that
ρ1(A) = 0 and ρ2(A

c) = ρ2(0). From (5.21), µ(A) = 0. From (5.22),
µ(Ac) = 0. Therefore, µ(X) > 0 cannot hold.

Let now have two measures ρ1 and ρ2 that are not mutually sungular.
Let γ = ρ1 + ρ2 be a new measure. Then both ρ1 and ρ2 are absolutely
continuous with respect to γ. Let p1 and p2 be densities (Radon–Nikodym
derivarives) of ρ1 and ρ2 with respect to γ. Let us define q(x) = p1(x)∧p2(x),
x ∈ X. Let us define r1(x) = p1(x) − q(x) and r2(x) = p2(x) − q(x). Let
µ, ν1, ν2 be measures absolutely continuous with respect to γ with densities,
respectively, q, r1, r2. Then identities (5.21)–(5.22) hold true.

If µ(X) = 0, then q(x) = 0 γ-a.s., and we get ρ1(dx) = r1(x)γ(dx) and
ρ2(dx) = r2(x)γ(dx). Therefore ρ1(A1) = ρ1(X) and ρ2(A2) = ρ2(X), where
A1 = {x : r1(x) > 0} and A2 = {x : r2(x) > 0} are two disjoint sets. �
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Proof of Theorem 5.10: Suppose that ρ1 and ρ2 are not mutually
singular. Let µ, ν1, ν2 be defined according to Lemma 5.3. Then

Pρ1 = Pµ + Pν1,(5.23)

Pρ2 = Pµ + Pν2.(5.24)

Due to Lemma 5.9, measures Pρ1 and Pρ2 are ergodic and hence mutually
singular. However, this contradicts Lemma 5.3 and decompositions (5.23)–
(5.24). �

Theorem 5.11. Let ρ be a probability measure on a Borel space (X, X ),
invariant under P(·, ·). Let ρI(·, ·) be a regular conditional probability with
respect to I(ρ, P ). Then for ρ-almost every x0, the measure ρI(x0, ·) is
P -invariant, forms an ergodic pair with P , and ρ is a mixture or convex
combination of those ergodic measures:

ρ =

�

X
ρ(dx0)ρI(x0, ·),

i.e.,

(5.25) ρ(A) =

�

X
ρ(dx0)ρI(x0, A), A ∈ X ,

and, more generally,

(5.26)

�

X
ρ(dx0)f(x0) =

�

X
ρ(dx0)

�

Ω
ρI(x0, dy0)f(y0), f ∈ L1(X, X , ρ).

Proof: We start with the ergodic decomposition for the measure Pρ de-
scribed in Theorem 4.6. We know that for Pρ-almost every x ∈ XZ

+, the mea-
sure Pρ,I = Pρ,I(XZ+,XZ+,Pρ,θ)

(x, ·) is θ-invariant and ergodic. Due to (5.18)

and part 3 of Theorem 4.4, we also have that for Pρ-almost every x ∈ XZ
+,

Pρ,I(XZ+,XZ+,Pρ,θ)
(x, ·) = Pρ,I0(x, ·).

Let us prove that for almost every x, Pρ,I0(x, ·) is a Markov measure

on (XZ+,X Z+
). We can assume that (X, X ) is the unit segment with Borel

σ-algebra. Let us take a countable set D dense in C[0, 1]. The values of

EP[f0(X0)f1(X1) . . . fn(Xn)], n ∈ Z+, f0, f1, . . . , fn ∈ D,

uniquely define the measure P on (XZ+,X Z+
). So let us compute

EPρ,I0
(x,·)[f0(X0)f1(X1) . . . fn(Xn)] = EPρ[f0(X0)f1(X1) . . . fn(Xn)|I0](x)

= EPρ[EPρ[f0(X0)f1(X1) . . . fn(Xn)|F0]|I0](x).
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We have

EPρ[f0(X0)f1(X1) . . . fn(Xn)|F0]

=f0(X0)

�

X
P(X0, dy1)f1(y1)

�

X
P(y1, dy2)f2(y2) . . .

�

X
P(yn−1, dyn)fn(yn)

=g(X0) = G(X)

for some functions g : X → R, G : XZ+ → R. Now

E[g(X0)|I0](x) =

�

XZ+

PI0(x, dy)G(y)

=

�

XZ+

PI0(x, dy)g(y0) =

�

X
ρI(x0, dy0)g(y0),

where in the last identity we used Lemma 5.2.
We thus obtain that for almost all x ∈ XZ+,

EPρ,I0
(x,·)[f0(X0)f1(X1) . . . fn(Xn)]

=

�

X
ρI(x0, y0)f0(y0)

�

X
P(y0, dy1)f1(y1) . . .

�

X
P(yn−1, dyn)fn(yn).

Now, the union of all exceptional sets in this identity for all choices of
n and functions fi ∈ D, i = 0, . . . , n, still has probability zero, and we
obtain that there is a set Ω̄ ⊂ XZ+ such that Pρ(Ω̄) = 1 and for every
x ∈ Ω̄, Pρ,I(x0, ·) defines a Markov process with transition kernel P (·, ·)
and initial distribution ρI(x0, ·). The set Ω̄ can be also chosen so that
all these measures are invariant and ergodic with respect to θ. Therefore,
their marginal distributions ρI(x0, ·) are P -invariant and form ergodic pairs
with P .

Identities (5.25) and (5.26) follow directly from the definitions of condi-
tional expectation and regular conditional probability. �

Corollary 5.1. If there is a P -invariant measure for a kernel P , there
is a P -ergodic measure.

If there are two distinct P -invariant measures, then there are two distinct
P -ergodic measures, i.e., to prove uniqueness of a P -invariant distribution,
it suffices to show uniqueness of P -ergodic distribution.

3. Filtrations. Stopping times. Strong Markov property

(I already have used some martingale techniques, so some material has
to be reordered.)

Suppose we have a probability space (Ω,F, P).

Definition 5.7. A family (Fn)n∈Z+ of σ-algebras is called a filtration if
Fn ⊂ Fn+1 for every n ∈ Z+.
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The standard interpretation of filtrations is that for every n ∈ Z+, Fn
is the collection of events observed on the time interval {0, 1, . . . , n}. One
can fully decide whether an event A ∈ Fn is true by observing all available
information up to time n.

Definition 5.8. Let (Xn)n≥0 be a stochastic process. Then the fil-
tration (Fn)n≥0 defined by Fn = σ(X0, . . . ,Xn) is the natural filtration of
(Xn)n≥0 or filtration generated by (Xn)n≥0.

In this case Fn cosnsists of all sets that can be described in terms of
random variables X0, . . . ,Xn, n ≥ 0. One can decide whether an event
A ∈ Fn is true by observing the trajectory of the process X up to time n.

Definition 5.9. Let (Xn)n≥0 be a stochastic process. We say that
(Xn)n≥0 is adapted to a filtration (Fn)n≥0 if for every n, the random variable
Xn is measurable with respect to Fn.

In particular, any process is adapted to its own natural filtration.

Definition 5.10. A random variable τ : Ω → Z+ ∪ {+∞} is called a
stopping time with respect to (Fn)n∈Z+ if {τ ≤ n} ∈ Fn for every n ≥ 0.

Problem 5.5. Check that in the definition above one can replace {τ ≤ n} ∈
Fn by {τ = n} ∈ Fn for every n ≥ 0.

The following is one of the most useful examples of hitting times. Let
(Xn)n≥0 be an (X, X )-valued stochastic process adapted to a filtration (Fn)n≥0.
This means that for every n, the random variable Xn is measurable with
respect to Fn. Let A be any set in X , and let

(5.27) τA = inf{n ∈ N : Xn ∈ A} ∈ Z+ ∪ {+∞}.

Then τA is a stopping time since

{τA = n} =
n−1�

k=1

{Xk /∈ A} ∩ {Xn ∈ A}.

Definition 5.11. The σ-algebra associated to a filtration (Fn)n≥0 and
a stopping time τ with respect to (Fn)n≥0 is defined by Fτ = {A ∈ F :
A ∩ {τ = n} ∈ Fn}.

Problem 5.6. Prove that Fτ is a σ-algebra. Give an example of a filtration
and a random variable τ (that is not a stopping time) such that Fτ defined above
is not a σ-algebra

The σ-algebra Fτ is interpreted as the σ-algebra of events observed on a
random time interval {0, 1, . . . , τ}. In other words, every event from Fτ can
be described in terms of the information available up to time τ . If (Fn)n≥0
is the natural filtration of (Xn)n≥0, then events from Fτ can be described
in terms of the realization of X up to time τ, i.e., on can decide whether
an event A ∈ Fτ is true or not based on the trajectory X0,X1, . . . ,Xτ (of
random length).
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Problem 5.7. Let (Fn)n≥0 be a filtration. Let (Xn)n≥0 be adapted to
(Fn)n≥0. Let τ be a finite stopping time with respect to (Fn)n≥0. Prove that
τ and Xτ are Fτ measurable.

The standard Markov property means that the future depends on the
past only through the present for any given time n, see, e.g., Theorems 5.5
and 5.4.

A nontrivial strengthening of the Markov property is obtained if one
requires the same with respect to a random time τ. Let us recall that we
work with Markov processes on the canonical space (XZ+,X Z+) eqauipped
with the standard shift operator θ, and its natural filtration (Fn) that we
will also call the canonical filtration. For all initial distributions ρ and all
Markov kernels P (·, ·) on (X, X ), Pρ is the corresponding measure on the
canonical path space (XZ+, X Z+)

Theorem 5.12. Let τ be a stopping time with respect to (Fn)n≥0, and
let H : XZ+ → R be a bounded random variable. For every distribution ρ on
(X, X ), on {τ < ∞} we have

EPρ(H ◦ θτ |Fτ )
a.s.
= EPρ(H ◦ θτ |Xτ )

a.s.
= EPXτ

H.

Definition 5.12. The claim of Theorem 5.12 is called the strong Markov
property.

Proof of Theorem 5.12: We need to check that for every B ∈ Fτ ,

EPρ

�
H ◦ θτ · 1B∩{τ<∞}

�
= EPρ

�
EPXτ

H · 1B∩{τ<∞}

�
.

It is sufficient to check

EPρ

�
H ◦ θτ · 1B∩{τ=n}

�
= EPρ

�
EPXτ

H · 1B∩{τ=n}
�
, n ≥ 0,

or, equivalently,

EPρ

�
H ◦ θn · 1B∩{τ=n}

�
= EPρ

�
EPXn

H · 1B∩{τ=n}
�
, n ≥ 0.

Since B ∩ {τ = n} ∈ Fn, the last identity is exactly the content of Theo-
rem 5.6. �



CHAPTER 6

Markov Processes on Finite State Spaces

This is not quite proofread. Proceed with caution.

1. Approach based on the abstract theory

In this section we apply the powerful results we have obtained to a
relatively simple case where X is finite.

We fix N ∈ N and assume that X = {1, . . . , N}, and X = 2X. Every
probability measure ρ on (X, X ) in this section will be identified with a prob-
ability vector (ρi)i∈X with ρi = ρ{i}. Every Markov kernel P on (X, X ) will
be identified with a transition matrix (Pij)

N
i,j=1 defined by Pij = P(i, {j}).

Let us study the set of all invariant distributions ρ with respect to P .
Of course, the problem is equivalent to finding all solutions of

(6.1) ρP = ρ

satisfying ρ ∈ ΔN, where

ΔN =
�
p ∈ RN : p1 + . . . + pn = 1, and pi ≥ 0 for all i ∈ {1, . . . , N}

�

The analysis can be performed with the help of the Perron–Frobenius theo-
rem, but let us use the theory of ergodic decomposition instead.

The simplex ΔN is compact and convex. The vector subspace defined
by (6.1) is also convex. Therefore, the intersection is also compact and con-
vex (we will shortly see that it is non-empty) and can be seen as the convex
hull of its extreme points. We know from the abstract ergodic decomposi-
tion that these extreme points are ergodic distributions. So let us establish
several useful facts.

We say that a set A ⊂ X is absorbing with repect to P if P (i, A) = 1 for
all i ∈ A.

Lemma 6.1. If A ⊂ X is absorbing with respect to P , then there is a
P -invariant distribution ρ satisfying ρ(A) = 1.

Proof: Let us use the Krylov–Bogolyubov approach. Let us take any
initial state i ∈ A and consider the initial distribution δi concentrated at i.
Consider a sequence of measures (or probability vectors)

ρn =
1

n

n−1�

k=0

δiP
k, n ∈ N.

65
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Since ρn ∈ ΔN, there is an increasing sequence (nk) and a vector ρ ∈ ΔN

such that ρnk → ρ. Now ρ satisfies (6.1) since

ρnkP − ρnk =
1

nk
(δiP

nk − δi) → 0, k → ∞.

It is also clear that due to the absorbing property of A, ρn(A) = 1 and
therefore ρ(A) = 1. �

Lemma 6.2. For every i ∈ X, there is at most one ergodic measure ρ
such that ρi > 0.

Proof: Had there been two such ergodic measures, they would not be
mutually singular. �

For i, j ∈ X, we write i → j if there is n ∈ N and i1, . . . , in such
that Pii1Pi1i2 . . . Pin−1inPinj > 0. If i → j and j → i we write i ↔ j.
This is an equivalence relation and we call any equivalence class a class of
communicating states.

Lemma 6.3. If ρ is invariant, ρi > 0, i → j, then ρj > 0.

Proof: Let Pii1Pi1i2 . . . Pin−1inPinj > 0. Then

ρj = Pρ{Xn+1 = j} ≥ ρiPii1Pi1i2 . . . Pin−1inPinj > 0.

�

Lemma 6.4. For every class A of communicating states there is at most
one ergodic measure ρ such that ρ(A) > 0.

Proof: The previous lemma implies that every invariant measure positive
on A assigns positive weights to all elements of i. The desired statement
follows now from Lemma 6.2. �

Lemma 6.5. If a set A is an absorbing classs of communicating states,
then there is exactly one ergodic measure ρ satisfying ρ(A) > 0. This mea-
sure ρ satisfies ρ(A) = 1.

Proof: Existence follows from Lemma 6.1. Uniqueness follows from Lemma 6.4.
Ergodicity, the absorbing property of A, and ρ(A) > 0 imply ρ(A) = 1. �

Lemma 6.6. If ρ is P -invariant, then the set A = {i ∈ X : ρi > 0} is an
absorbing class. If in addition ρ is ergodic, then A is a class of communi-
cating states.

Proof: If A is not absorbing, there are i ∈ A and j ∈ Ac such that Pij > 0.
Then 0 = ρj ≥ ρiPij > 0, a contradiction.

Suppose there are states i, j ∈ A such that i �→ j. The set B = {k ∈ X :
i → k} is an absorbing set not containing j. We have ρ(B) ≥ ρi > 0 and
ρ(B) ≤ 1 − ρj < 1. This contradicts the ergodicity of ρ. �
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Lemma 6.7. Let i ∈ X and Pi(B) > 0, where

B = {Xn �= i for all n ∈ N}.

Then ρi = 0 for every invariant measure ρ.

Proof: Due to the ergodic decomposition, it is sufficient to prove that for
every ergodic ρ, ρi = 0. Suppose ρi > 0. Due to the ergodic theorem,
Pρ(A) = 1, where

A =

�
1

n

n−1�

k=0

1{Xk=i} → ρi

�

.

Since

1 = Pρ(A) =

�

X
ρ(dj)Pj(A) =

�

j∈X

ρjPj(A),

we conclude that Pi(A) = 1. Clearly, A∩B = ∅, so Pi(A) = 1 and Pi(B) > 0
contradict each other. �

Summarizing the results above we obtain the following theorem.

Theorem 6.1. Let i ∈ X. If there is j such that i → j and j �→ i, then
there is no invariant distribution ρ satisfying ρi > 0. If there is no such
state j, then there is a unique ergodic distribution ρ satisfying ρi > 0. The
set A = {j ∈ X : ρj > 0} coincides with B = {j ∈ X : i → j}.

Proof: The first part follows from Lemma 6.7. To prove the second
part, we note that the set B is an absorbing class of communicating states.
Lemma 6.5 implies that there is a unique ergodic measure ρ supported by B.
Lemma 6.3 implies ρj > 0 for every j ∈ B. �

If all states form one class, the kernel P is called irreducuble or ergodic.
Then there is exactly one invariant distribution. This situation is often
called unique ergodicity.

Often, to analyze the invariant distribution ρ there is no better way the
to solve equation (6.1). However, there are useful representations for the
invariant distributions.

One such representation is the following, taken from [FW12]. We think
of X as the complete directed graph where each edge (ij) is assigned a weight
Pij. To each state i we associate a collection Gi of directed subgraphs g with
the following properties: there is no arrow coming out of i, for each j �= i,
there is exactly one arrow coming out of j, and there are no cycles. For
every collection g of arrows we define

π(g) =
�

(jk)∈g

Pjk.

For every i ∈ X, we define Qi =
�
g∈Gi

π(g). We also set

(6.2) qi =
Qi�
j∈XQj

.
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Theorem 6.2. Suppose q is defined in (6.2). Then qP = q.

Proof: It is sufficient to check
�

i∈X

QiPij = Qj,

or, moving QjPjj to the right-hand side,
�

i�=j

QiPij = Qj(1 − Pjj) =
�

i�=j

QjPji.

It remains to check that both sides are equal to
�
g∈H π(g), where H consists

of all graphs with the following properties: (i) for every vertex, there is
exactly one outgoing arrow, (ii) there is exactly one cycle, (iii) this cycle
contains j. �

Often, the following property is useful. We say that the transition kernel
P is reversible with respect to a measure ρ if the following condition of
detailed balance holds:

(6.3) ρiPij = ρjPji, i, j ∈ X.

This condition automatically implies invariance of ρ since
�

i

ρiPij =
�

i

ρjPji = ρj
�

i

Pji = ρj, j ∈ X.

Reversibility, in fact, means that the time-reversed process has the same
distribution. To compute the transition probability of the time-reversed
process, we write

Pρ(Xn = i|Xn+1 = j) =
Pρ{Xn = i,Xn+1 = j}

Pρ{Xn+1 = j}

=
Pρ{Xn = i}Pρ{Xn+1 = j|Xn = i}

Pρ{Xn+1 = j}

=
ρiPij
ρj

=
ρjPji
ρj

= Pji.

One example of a time-reversible Markov chain is the random walk on an
undirected graph. Here P(i, ·) is the uniform distribution on the neighbors
of i. It is easy to see that if one defines ρi = deg(i)/Z where deg(i) denotes
the number of neighbors of i in the graph, and Z is a normalization constant,
then the detailed balance holds. In particular, ergodic theorem implies that
the average time the random walk spends at a vertex is proportional to the
degree of the vertex and does not depend on any other geometric features
of the graph.

To check if the detailed balance holds one can start with fixing ρi for
some i and then sequentially assign weights ρj to other vertices using (6.3)
hoping that the assigned values will be self-consiistent. This is essentially
the idea behind the following Kolmogorov’s reversibility criterion:
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Theorem 6.3. Suppose (Pij) is an irreducible kernel. Then it is re-
versible with respect to some measure ρ iff for every n and every sequence
of vertices i1, i2, . . . , in,

(6.4) Pi1i2Pi2i3 . . . Pin−1inPini1 = Pi1inPinin−1 . . . Pi2i1

Proof: To derive (6.4) from reversibility, it is sufficient to write (6.3) for
i1, i2, for i2, i3, etc, take the product of these identities and cancel

�
k ρik

on both sides.
If we assume that (6.4) holds true for all sequences of states, then we

can take an arbitrary i0 ∈ X and for every i define

ρi =
1

Z

Pi0i1Pi1i2 . . . Pin−1inPini

PiinPinin−1 . . . Pi2i1Pi1i0
,

where the sequence (i0, i1, . . . , in) is chosen so that PiinPinin−1 . . . Pi2i1Pi1i0 >
0, and the normalization constant Z independent of i is to be chosen later.

Condition (6.4) implies that this definition does not depend on the choice
of a specific sequence (i0, i1, . . . , in): If (i0, i

�
1, . . . , i

�
n) is another such se-

quence, we obtain

Pi0i1Pi1i2 . . . Pin−1inPini

PiinPinin−1 . . . Pi2i1Pi1i0
=
Pi0i�1Pi�1i�2 . . . Pi�n−1i

�
n
Pi�ni

Pii�nPi�ni�n−1
. . . Pi�2i�1Pi�1i�0

.

Also, it is clear from (6.4) that existence of a cycle realizing i0 → i → i0
implies that ρi > 0 for all i.

Similarly, we see that if Pij > 0, then Pji > 0, so to check (6.3), we write

ρiPij =
1

Z

Pi0i1Pi1i2 . . . Pin−1inPini · Pij

PiinPinin−1 . . . Pi2i1Pi1i0
·
Pji
Pji

=
1

Z
ρjPji.

�

In applications, one can use the idea of reversibility to construct Markov
chains with a given invariant distribution ρ.

Often in systems with statistical mechanics flavor, there is no easy access
to the values ρi themselves, but the ratios ρi/ρj are easy to compute. This
happens, for example, for Boltzmann–Gibbs distributions where

ρi =
e−βH(i)

Z
, i ∈ X.

Here H : X → R is the energy function and β ≥ 0 is the inverse temperature.
Such distributions for various choices of H are ubiquitous in statistical me-
chanics. Let us fix some H. Some characteristic features of such a family of
distributions can be seen for limiting cases β → 0 and β → ∞. When β = 0
and the temperature is infinite, then all states are equally probable, and
this can be interpreted as a complete disorder. On the other hand, if β is
large (the temperature is small), the states with minimal energy (“ground”
states) are much more probable than other states, and as β → ∞, the system
“freezes” to the ground states.
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When X is a large set, computing the values of Z and ρi is not easy.
However, computing ρi/ρj = eβ(H(j)−H(i)) is immediate. Let us use this to
construct a ρ-reversible Markov chain known as Metropolis–Hastings algo-
rithm. Let us assume for simplicity that X is endowed with a graph structure
and each state is connected to exactly d other states. We denote by E the
set of edges in this graph. Then let us choose

Pij =






0, {i, j} �∈ E,
1
d(1 ∧

ρj

ρi
), {i, j} ∈ E,

1 −
�
j:{i,j}∈E

1
d(1 ∧

ρj

ρi
), j = i.

In words, if the system is at state i, it chooses j among the neighboring
d states uniformly at random (with probability 1/d) and then, if ρj ≥ ρi,
jumps to j. If ρj < ρi, then the jump to j gets approved only with probability
ρj/ρi. In the case where it does not get approved, the system stays in the
state i.

To check the detailed balance it is sufficient to note that

Pij
Pji

=
1 ∧

ρj

ρi

1 ∧ ρi

ρj

=
ρj
ρi
, {i, j} ∈ E,

irrespective of whether ρj ≥ ρi or vice versa.

2. Perron–Frobenius Theorem

One can also treat ergodic results on Markov kernels on finite state spaces
as consequences of the classical Perron–Frobenius theorem to stochastic ma-
trices (i.e., matrices with nonnegative values with sum of elements in each
row equal to 1). For completeness, we give several proofs of this theorem or
related statements.

There are several statements that pass under this title. Here we follow
the exposition in [KH95].

Theorem 6.4. Let d ∈ N and suppose A is a d× d matrix with nonneg-
ative entries such that for some n ∈ N all entries of An are positive. Then
there is an eigenvector x0 with all positive components. If x is an eigen-
vector with nonnegative components, then x = cx0 for some c > 0. The
eigenvalue λ associated with x0 is simple and all other eigenvalues are less
than λ in absolute value.

Proof: For x ∈ Rd we will write |x|1 =
�d
i=1 |xi|. Let us introduce C =

{x ∈ RN : xi ≥ 0, i = 1, . . . , d} and Δ = {x ∈ C :
�d
i=1 xi = 1}. The

simplex Δ is the convex hull of its extreme points e1 = (1, 0, 0, . . . , ), e2 =
(0, 1, 0, . . . , ), . . . , ed = (0, 0, . . . , 0, 1).

For every x ∈ Δ we introduce Tx = Ax/|Ax|1 ∈ Δ.
Let us study some properties of Δ0 =

�∞
k=1 T

kΔ. Images of convex

closed sets under T are convex closed sets, so all sets T kΔ, k ∈ N are convex
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and closed, and so is their intersection Δ0. Since T k+1Δ ⊂ TkΔ for all
k ∈ N, we obtain Δ0 �= ∅.

The conditions of the theorem imply that

(6.5) TmΔ ⊂ Int Δ, m ≥ n,

where Int Δ denotes the relative interior of Δ. Therefore, Δ0 ⊂ Int Δ.
Let us show that Δ0 has at most d extreme points. Namely, let us

choose an increasing sequence (nk)k∈N such that limk→∞ T
nkei = xi for

some xi ∈ Δ0, i = 1, . . . , d, and prove that all ext Δ0 ⊂ {x1, . . . , xd}.
If x ∈ Δ0 then x ∈ TnkΔ for all k ∈ N and therefore x is a convex

combination of extreme points of TnkΔ. All these are images of extreme

points of Δ under Tnk, so we obtain a representation x =
�d
i=1 α

(k)
i T nkei

for some α
(k)
i ≥ 0 satisfying

�d
i=1 α

(k)
i = 1, k ∈ N. Choosing an increasing

sequence (k(m))m∈N such that limm→∞ α
(nk(m))

i = αi for some αi, we obtain

x =
�d
i=1 αixi, so if x is an extreme point it has to coincide with one of xi,

i = 1, . . . , d.
Since Δ0 = TΔ0 and ext Δ0 is finite, we obtain ext Δ0 = T ext Δ0, in

other words T acts a permutation on ext Δ0. Therefore there is a number
m ∈ N such that Tmx = x for every x ∈ ext Δ0. So, every x ∈ ext Δ0 is an
eigenvector of Am with a positive eigenvalue.

Let us prove that, in fact, there cannot be two distinct eigenvectors with
those properties. There are two cases to exclude: (i) there are x, y ∈ Δ0 and
ν > 0 such that x �= y Amx = νx and Amy = νy; (ii) there are x, y ∈ Δ0

and ν > µ > 0 such that and Amx = νx and Amy = µy.
In case (i), there is a number α such that z = x + α(y − x) ∈ ∂Δ.

Therefore Amnz = νnz ∈ ∂C, so Tmnz ∈ ∂Δ which contradicts TmnΔ ⊂
Int Δ.

In case (ii), we can use y ∈ Int Δ to choose ε > 0 small enough to ensure
that z = y − εx ∈ Int C. Then Akmz = µky − ενkx, so for sufficiently large
k, Akmz /∈ C which is a contradiction.

We conclude that Δ0 contains a unique point x0. Recalling that Δ0 is
T -invariant, we obtain that Tx0 = x0, i.e., Ax0 = λx0 for some λ > 0.

Let us show that if Ax = µx for any x ∈ C that is not a multiple of x0
and satisfies x �= 0, then |µ| < λ.

If µ = ±λ, then we can find α ∈ R such that z = x0 + αx ∈ ∂C \ {0}.
Then A2kz = λ2kz for all k ∈ N which contradicts (6.5).

If µ ∈ R and |µ| > λ, then we have already proved that x �∈ C. Also we
can find ε > 0 small enough to guarantee that z = x0 + εx ∈ Int C. Then
for large values of m, the direction of A2m+1z will be close to the direction
of ±x, so we will have A2m+1z /∈ C which contradicts A-invariance of C.

In general, if µ = ρei2πφ for some ρ > 0 and φ ∈ R, then there is a
plane L such that the action of A on L is multiplication by ρ and rotation
by angle φ.
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If φ = k/l for some k ∈ Z and l ∈ N, then Al acts on L as multiplication
by ρl, and we can apply the above analysis to Al and conclude that ρ < µ.

If φ is irrational, then for any δ > 0, the direction of Akx will get δ-close
to that of x for an infinitely many values of k. Let us denote the set of those
values of k by K. So we choose x ∈ L \ C and ε small enough to ensure
z = x0 +εx ∈ Int C. If ρ > λ, then for sufficiently large k ∈ K, the direction
of Akz will be close to that of x, and so Akz /∈ C for those values of k, a
contradiction. If ρ = λ, then we choose y ∈ L so that z = x0+αy

|x0+αy|1
∈ ∂Δ.

Since φ is irrational,

T kz =
x0 + ei2πφαy

|x0 + ei2πφαy|1
will get arbitrarily close to ∂Δ for infinitely many values of k which contra-
dicts (6.5).

To finish the proof that λ is simple, we must prove that there are no
nontrivial Jordan blocks for matrix A. Suppose there is such a block. Then
there is a vector x1 such that Ax1 = λx1 + x0. Let y = λx1 + x0. Then
Ay = λ(y + x0). Now we can choose ε such that z = x0 − εy ∈ Int C, and
compute by induction

Anz = λn((1 − nε)x0 − εy), n ≥ 0.

We see that for sufficiently large n, Anz /∈ C which is a contradiction. �

3. Hilbert projective metric approach.

Let us give another proof of the Perron–Frobenius theorem based on
contraction in the so called Hilbert projective metric. We follow exposition
in [Bal00] that, in turn, follows [Fur60]

For two points x, y ∈ Rd we will write x ≤ y and y ≥ x if y − x ∈ C.
We write x ∼ y if x = ry for some r > 0. Let us denote C∗ = C \ {0} and
introduce

α(x, y) = sup{r ∈ R+ : rx ≤ y}, x, y ∈ C∗.

We note that α(x, y) ∈ [0,∞) for all x, y ∈ C and α(x, x) = 1 for all x ∈ C.
Also,

(6.6) α(x, z) ≥ α(x, y)α(y, z), x, y, z ∈ C∗,

since z ≥ α(y, z)y and y ≥ α(x, y)x. Next we define Γ(x, y) = α(x, y)α(y, x).
Inequality (6.6) implies

(6.7) Γ(x, z) ≥ Γ(x, y)Γ(y, z), x, y, z ∈ C∗.

Applying this to z = x, and noticing that Γ(x, x) = 1, we obtain

0 ≤ Γ(x, y) ≤ 1, x, y ∈ C∗.

Moreover, Γ(x, y) = 1 iff x ∼ y. One part of this statement is obvious since
for every r > 0, α(x, rx) = r. To see the converse implication, we notice
that α(x, y)α(y, x) = 1 implies that there is r > 0 such that x ≥ ry and
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y ≥ r−1x. The latter is equivalent to ry ≥ x, so these two inequalities can
hold together only if x = ry.

We can now define the Hilbert projective metric by

Θ(x, y) = − ln Γ(x, y) = − lnα(x, y) − lnα(y, x) ∈ [0,∞].

Notice that Θ(x, y) is infinite if x, y ∈ ∂C and x �∼ y. The following triangle
inequality follows from (6.7):

Θ(x, z) ≤ Θ(x, y) + Θ(y, z), x, y, z ∈ C∗.

From the properties of Γ, we derive that Θ(x, y) = Θ(x, ry) for any x, y ∈ C∗

and r > 0, and Θ(x, y) = 0 iff x ∼ y, so Θ is a pseudo-metric on C∗ and a
metric on Δ = C∗/ ∼.

Other ways to represent Θ are

Θ(x, y) = − ln

�

min
i

xi
yi

· min
j

yj
xj

�

= ln

�

max
i

yi
xi

· max
j

xj
yj

�

= ln max
i,j

xjyi
yjxi

.

Let us prove that the map T : Δ → Δ is nonexpanding. First, we
notice that x − ry ∈ C implies A(x − ry) = Ax − rAy ∈ C. Therefore
α(Ax,Ay) ≥ α(x, y), so Θ(Ax,Ay) ≤ Θ(x, y).

Assuming now that all the entries of A are positive, let us prove that
the contraction coefficient is actually strictly less than 1. First we recall
that in this case TΔ is a compact subset of Int Δ. Therefore, expressions
ln(xjyi/(yjxi)) are uniformly bounded with respect to x, y ∈ Δ, and

D = diam(TΔ) = sup{Θ(x, y) : x, y ∈ Δ} < ∞,

or, equivalently
δ = inf{Γ(x, y) : x, y ∈ C∗} > 0.

These numbers are related by δ = e−D. The following theorem establishes
the strict contraction property of θ.

Theorem 6.5. If A has all positive entries, then for all x, y ∈ Δ,

(6.8) Θ(Tx, Ty) ≤
1 −

√
δ

1 +
√
δ

Θ(x, y).

Proof: Let us take two distinct points x, y ∈ Δ. We can assume that
Θ(x, y) < ∞, i.e., both numbers α1 = α(x, y) and α2 = α(y, x) are nonzero.
Then y −α1x ∈ C∗ and x/α2 − y ∈ C∗. Applying the definition of δ to those
vectors, we obtain that there are two numbers λ1, λ2 ≥ 0 such that λ1λ2 ≥ δ
and

A(x/α2 − y) ≥ λ1A(y − α1x),

A(y − α1x) ≥ λ2A(x/α2 − y),

i.e.,

Ax ≥
1 + λ1
1
α2

+ λ1α1
Ay, Ay ≥

α1 + λ2
α2

1 + λ2
Ax.
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So,

Θ(Tx, Ty) = Θ(Ax,Ay) ≤ − ln
(1 + λ1)(α1 + λ2

α2
)

( 1α2
+ λ1α1)(1 + λ2)

= −

�

ln
1

α1α2
+ 1
λ2

1
α1α2

+ λ1
− ln

1 + 1
λ2

1 + λ1

�

=

� 1/(α1α2)

0

1
λ2

− λ1

(t + 1
λ2

)(t + λ1)
dt =

� ln(1/(α1α2))

0

( 1λ2
− λ1)e

s

(es + 1
λ2

)(es + λ1)
ds

=

�
1

λ1λ2
− 1

�� ln(1/(α1α2))

0

λ1e
s

(es + 1
λ2

)(es + λ1)
ds

Elementary analysis shows that the maximum of the expression λ1t/((t +
1
λ2

)(t+λ1)) over t ≥ 0 is attained at t =
�
λ1/λ2 and equals (1+1/

√
λ1λ2)

−2.
Therefore,

Θ(Tx, Ty) ≤ ln
1

α1α2

1
λ1λ2

− 1

( 1√
λ1λ2

+ 1)2
=

1√
λ1λ2

− 1

1√
λ1λ2

+ 1
Θ(x, y) =

1 −
√
λ1λ2

1 +
√
λ1λ2

Θ(x, y).

The function t �→ (1 − t)/(1 + t) decays for t ≥ 0, so the last expression is
bounded by the right-hand side of (6.8). �

This strict contraction property implies existence and uniqueness of a
fixed point of T on Δ, along with exponential convergence of iterations of
TnΔ to that fixed point. If the requirement of positivity of all entries is
satisfied not for A but for Am for some m ∈ N, then the above reasoning
still can be applied to Am, since A itself is non-expanding.



CHAPTER 7

Countable state space Markov chains

1. Strong Markov property with respect to state hitting times

A very useful way to look at Markov chains is to study return times to
a state. In this section we assume that X = {1, . . . , N} or X = N (in the
latter case we set N = ∞).

Let us recall the definition (5.27). For an arbitrary i ∈ X, we define
τi = τ{i} and note that PXτi

= Pi on {τi < ∞}.

Theorem 7.1. Let Pρ{τi < ∞} = 1. Then for any bounded random
variable H : XZ+ → R, and every set B ∈ Fτi, i.e.,

(7.1) EPρ[H ◦ θτi · 1B] = EPρ[H ◦ θτi]Pρ(B).

Proof: For brevity we denote τ = τi The strong Markov property implies
that

EPρ[H ◦ θτ · 1B] = EPρ[EPρ[H ◦ θτ · 1B|Fτ ]]

= EPρ[1BEPρ[H ◦ θτ |Fτ ]]

= EPρ[1BEPXτ
H]

= EPρ[1BEPi
H]

= Pρ(B)EPi
H

This identity with B = XZ+ gives

EPρ[H ◦ θτ ] = EPi
H.

The last two identities together imply(7.1). �

Theorem 7.1 means that the future and the past of a Markov process
with respect to a visit to a state i are independent of each other. Iterating
this argument, we obtain that the realization of the Markov process can be
split in excursions, each excursion being a path between two consecutive
visits to i.

Of course, this is loosely formulated. I hope to add more to this later.

2. Invariant measures and classification of states

Some notions and results for countable state Markov chains can be
adapted from the finite state space situation. In particular, Lemmas 6.2–6.7
still hold true for countable X. However, Theorem 6.1 does not hold true
for countable state space. The main difference is the following. The only
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situation where a state i ∈ X cannot belong to the support of any invariant
distribution on a finite X is described by the conditions of Lemma 6.7. This
statement fails to be true for a general Markov chain on a countable X.

The central topic in the study of Markov processes on a countable state
space is recurrence. Let us introduce the corresponding notions.

We recall that τi = min{k ∈ N : Xk = i} for i ∈ X.

Definition 7.1. A state i ∈ X is transient if Pi{τi < ∞} < 1.

Definition 7.2. A state i ∈ X is recurrent if Pi{τi < ∞} = 1.

Definition 7.3. A recurrent state i ∈ X is positive recurrent if Eiτi < ∞.

Definition 7.4. A recurrent state i ∈ X is null-recurrent if Eiτi < ∞.

Theorem 7.2. In every communication class, all states are of the same
type.

Proof: To be inserted �

Lemma 7.1. If i ∈ X is transient, then for every ergodic invariant dis-
tribution ρ, ρi = 0.

Proof: This lemma is simply a version of Lemma 6.7. �

Theorem 7.3. If h ∈ X is positive recurrent, then there is a unique
invariant distribution ρ such that ρh > 0. This invariant measure ρ is
ergodic.

Proof: Let πi, i ∈ X be the average time spent in i by the process started
at h before coming back to h:

(7.2) πi = Eh

∞�

k=0

1{Xk=i,k<τh} =
∞�

k=0

Ph{Xk = i, k < τh}

Note that according to this definition, πh = 1. Note also that

�

i∈X

πi = Eh
�

i∈X

∞�

k=0

1{Xk=i,k<τh} = E
∞�

k=0

1{k<τh} = Ehτh < ∞,

so the measure π is finite, and its normalized version ρi = πi/Ehτh is a
probability measure. Let us check that πP = π. We can write

(7.3)
�

j∈X

πjPji =
�

j∈X

∞�

k=0

Ph{Xk = j, k < τh}Pji.

If i �= h, then the right-hand side equals
∞�

k=0

Ph{Xk+1 = i, k + 1 < τh} = πi.
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If i = h, the the right-hand side of (7.3) equals
∞�

k=0

Ph{Xk+1 = h, k + 1 = τh} = P{τh < ∞}.

The invariance of ρ follows, and so does ergodicity and uniqueness of the
invariant measure. which completes the proof. �

Corollary 7.1. If h ∈ X is positive recurrent and ρ is the ergodic
invariant distribution satisfying ρi > 0, then ρh = 1/Eiτi, or, equivalently

(7.4) Ehτh = 1/ρh.

Let us prove the converse statement.

Theorem 7.4. Suppose an ergodic invariant distribution ρ satisfies ρh >
0 for some h ∈ X. Then (7.4) holds.

Proof: Let us denote τ0h = inf{k ∈ N : Xk = h} and then recursively,

τn+1h = inf{k ∈ N : Xτn+k = h}, n ∈ N.

In other words, τnh is the length of the n-th excursion between two cinsecutive
visits to h.

We also set S0 = 0 and

Sn = τ1h + . . . + τnh , n ∈ N.

Due to the strong Markov property, random variables (τnh )n≥2 form an i.i.d.
sequence. Therefore, the strong law of large numbers applies, and we obtain

Sn
n

a.s.
−→Ehτh ∈ (0,∞].

The number of excursions or visits to h up to time m ∈ N is given by

N(m) = max{n ≥ 0 : Sn ≤ m}, m ≥ 0.

We have
SN(m) ≤ m < SN(m)+1, m ≥ 0.

Therefore,
SN(m)

N(m)
≤

m

N(m)
<
SN(m)+1

N(m)
, m ≥ 0.

By the strong law of large numbers, both l.h.s. and r.h.s. converge to Ehτh
a.s., and so does

m

N(m)

a.s.
−→Ehτh.

On the other hand, ergodicity of ρ impies the ergodicity of Pρ, and the
ergodic theorem implies

N(m)

m
=

1

m

m−1�

k=0

1{Xk=h}
a.s.
−→Eρ1{X0=h} = Pρ{X0 = h} = ρh.

Comparing two last displays, we obtain the statement of the theorem. �
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Corollary 7.2. Suppose h ∈ X is null-recurrent. Then every invariant
distribution ρ satisfies ρh = 0.

Remark 7.1. In fact, Theorem 7.4 and its corollary justify the choice of
terminology. In the long run, the process spends a positive fraction of time
in any positive recurrent state, and it spends asymptotically zero fraction of
time in a null recurrent state.

2.1. Lyapunov–Foster criterion for positive recurrence.

Theorem 7.5. Let P (·, ·) be a transition kernel on a countable space X
such that all states in X are communicating. Let Lf = Pf − f for any
function f such that Pf is well-defined. The process is positive recurrent iff
there is a function V : X → R+ such that A = {x ∈ X : LV (x) > −1} is a
finite set.

The function V is called a Lyapunov function. In the theory of differ-
ential equations, a Lyapunov function is a function that decreases along the
trajectories of the system. In the Markov setting, requiring deterministic
decrease is often unrealistic. However, the Lyapunov function introduced in
the conditions of Theorem 7.5 decreases on average outside of A:

(7.5) PV (x) ≤ V (x) − 1, x ∈ Ac.

Proof of Theorem 7.5: For x /∈ A we can write

V (x) ≥ 1 + PV (x) ≥ 1 +

�

X
P(x, dx1)V (x1) ≥ 1 +

�

Ac

P(x, dx1)V (x1).

Applying the same estimate to V (x1) we obtain iteratively

V (x) ≥1 +

�

Ac

P(x, dx1)

�

1 +

�

Ac

P(x1, dx2)V (x2)

�

≥1 +

�

Ac

P(x, dx1) +

�

Ac

�

Ac

P (x, dx1)P (x1, dx2)V (x2)

≥ . . .

≥1 +

�

Ac

P(x, dx1) +

�

Ac

�

Ac

P (x, dx1)P (x1, dx2)

+ · · · +

�

Ac

. . .

�

Ac

P (x, dx1)P (x1, dx2) . . . P (xn−1, dxn)

+

�

Ac

. . .

�

Ac

P (x, dx1)P (x1, dx2) . . . P (xn, dxn+1)V (xn+1).

Omitting the last nonnegative term, we obtain

V (x) ≥ 1 + Px{τA > 1} + Px{τA > 2} + . . . + Px{τA > n}, n ∈ N.
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Therefore,

V (x) ≥
∞�

n=0

Px{τA > n} =
∞�

n=0

∞�

k=n+1

Px{τA = k} =
∞�

k=1

k−1�

n=0

Px{τA = k}

=

∞�

k=1

kPx{τA = k} = ExτA.

In particular, Px{τA = ∞} = 0, and we also obtain A �= ∅.
So we have proved that for all x ∈ Ac,

(7.6) ExτA < ∞

In fact, it immediately follows that (7.6) holds for all x ∈ X. Let us now prove
that there are positive recurrenct states in A. We will do so by constructing
a P -invariant finite measure π on X such that π(A) > 0.

Let us consider a transition matrix Qij on A defined by

Qij = Pi{XτA = j}, i, j, ∈ A.

This transition matrix defines a Markov kernel on a finite set A. By Lemma 6.1,
there is a Q-invariant probability ν. For all i ∈ X, we define πi to be the
average time spent at i by the process X during an excursion between two
consecutive visits to A, initiated according to the initial distribution ν.

πi = Eν

∞�

k=0

1{Xk=i,k<τ} =
�

h∈A

νh

∞�

k=0

Ph{Xk = i, k < τ}.

We claim that this is an invariant measure for P . For j /∈ A,

(πP)j =
�

i∈X

�

h∈A

νh

∞�

k=0

Ph{Xk = i, k < τ}Pij

=
�

h∈A

νh

∞�

k=0

Ph{Xk+1 = j, k + 1 < τ} = πj.

For j ∈ A,

(πP)j =
�

i∈X

�

h∈A

νh

∞�

k=0

Ph{Xk = i, k < τA}Pij

=
�

h∈A

νh

∞�

k=0

Ph{Xk+1 = j, τA = k + 1}

=
�

h∈A

νhPh{XτA = j} =
�

h∈A

νhQhj = νj.

This finishes the proof of the claim since νj = πj for j ∈ A.
Since π(A) > 0 and all states communicate, πi > 0 for all i. Therefore,

all states are positive recurrent by Theorem 7.4.
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In the opposite direction, if the process is recurrent, then we can take
an arbitrary non-empty finite set A ⊂ X and define V (x) = Exτ

0
A for any

state x ∈ X, where

τ0A = inf{n ∈ Z+ : Xn ∈ A} =

�
0, X0 ∈ A,

τA, X0 /∈ A.

Then for any x /∈ A

V (x) = Exτ
0
A =

�

X
P(x, dy)(1 + Eyτ

0
A) = 1 +

�

X
P(x, dy)Eyτ

0
A

= 1 +

�

X
P(x, dy)V (y) = 1 + PV (x),

so LV (x) = −1. �

Let us consider an example. Suppose X = Z+ and

Pij =






p, j = i − 1, i �= 0

1 − p, j = i + 1, i �= 0,

1, i = 0, j = 1,

0, otherwise,

for some p ∈ (0, 1/2). Let v(i) = i, i ∈ Z+. Then for i �= 0,

Lv(i) = p(i − 1) + (1 − p)(i + 1) − i = 1 − 2p.

Therefore, taking V (i) = i/(1−2p), we obtain a Lyapunov function satisfy-
ing the conditions of Theorem 7.5.

Problem 7.1. Prove that the process is not positive recurrent if p ≥ 1/2.



CHAPTER 8

More general state space. Minorization conditions.

In this section we consider an arbitrary state space (X, X ) without mak-
ing any assumptions on the cardinality of X.

1. The Doeblin condition

We say that a transition probability P(·, ·) on (X, X ) satisfies the Doeblin
condition if there is a probability measure ν and a number p ∈ (0, 1) on
(X, X ) such that P(x,A) ≥ pν(A) for all x ∈ X and all A ∈ X .

The measure ν is called a minorizing measure for kernel P (·, ·). Under
the Doeblin condition, we can introduce a kernel Q(x, ·) = ν(·) that is
identically equal to ν and define

Pν(x, ·) = P(x, ·) − ν(·) = P(x, ·) − pQ(x, ·).

Then Pν is a subprobability kernel.

Definition 8.1. A function R : X×X → [0, 1] is called a subprobability
kernel or sub-Markov kernel if i.e., (i)for every x ∈ X, R(x, ·) is a measure
on (X, X ) satisfying R(x,X) ≤ 1 and (ii) for every A ∈ X, R(·, A) is X -
measurable.

Theorem 8.1. If Doeblin’s condition holds true, then there is an invari-
ant measure.

Proof: We use Q and Pν introduced above to define

(8.1) ρ = p
∞�

n=0

νPnν = p
∞�

n=0

ν(P − pQ)n.

This series converges and defines a probability measure since

ρ(X) = p
∞�

n=0

(1 − p)n = 1.

Let us prove that ρ is invariant. We represent P = pQ+ (P −pQ), note
that µQ = ν for any measure µ on (X, X ), and write

ρP = pρQ + ρ(P − pQ) = pν + p
∞�

n=0

ν(P − pQ)n+1

= pν + p

∞�

n=1

ν(P − pQ)n = p

∞�

n=0

ν(P − pQ)n = ρ.

81
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�

Let us try to understand the “resolvent” formula (8.1). Since

P(x, dy) = pν(dy) + (1 − p)R(x, dy),

where R(x, dy) = (P(x, dy) − ν(dy))/(1 − p) is a transition probability, we
can rewrite (8.1) as

(8.2) ρ =
∞�

n=0

pQ((1 − p)R)n.

This formula suggests that it is useful to represent the Markov evolution in
the following way: one considers an i.i.d. family of Bernoulli variables (κi)
taking values 1 with probability p and 0 with probability 1 − p. To obtain
Xn given Xn−1 we apply the following procedure: Conditioned on κn = 1,
the distribution of Xn is ν, Conditioned on κn = 0, the distribution of Xn
is R(Xn−1, ·).

So let us now find the distribution at time 0. First, let us condition on
the event

Bn = {κ−n = 1, κ−n+1 = 0, . . . , κ0 = 0}.

Conditioned on this event, X−n ∼ ν, X−n+1 ∼ νR,. . . , X0 ∼ νRn. Prob-
ability of Bn equals p(1 − p)n. Using the complete probability formula
gives (8.1).

Also, in analogy with countable state space situation, one can interpret
ρ as the average occupation time during one excursion if by excursion we
mean the time interval between two times when κi = 1.

The idea is that if

τκ = min{n ∈ N : κn = 0},

then the distribution of Xτκ is given by ν. In a sense, the process gets
started anew with ν being the initial distribution.

(This needs a more detailed explanation)

Theorem 8.2. If Doeblin’s condition is satisfied, then there is at most
one P -invariant distribution ρ.

Proof: Due to the ergodic decomposition, we only need to prove that there
is at most one ergodic distribution under P . We also know that every two
distinct ergodic distributions must be mutually singular. However, for every
invariant distribution ρ,

ρ(A) =

�

X
ρ(dx)P(x,A) ≥

�

X
ρ(dx)pν(A) ≥ pν(A),

an we obtain a contradiction with Lemma 5.3. �

The Doeblin condition is rather restrictive. For example, if P (x, ·) is
given by N(x/2, 1), one cannot find a minorizing measure serving all x
simultaneously. However, this condition becomes useful if one considers
embedded Markov processes. In analogy with the trick we used when proving
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Theorem 7.5, we can try to execute the following program: (i) find a subset
A of a Markov process is positive recurrent, (ii) prove the Doeblin condition
for the Markov process observed only at times it visits A, (iii)construct an
invariant distribution for this “embedded” Markov process, and (iv)use this
measure to construct an invariant ditribution for the original process.

How can one ensure that a set A is positive recurrent?

Theorem 8.3. Let P (·, ·) be a transition kernel on a space (X, X ). Sup-
pose there are a fuction V : X → R+ and a set A ⊂ X such that for every
x ∈ A, LV (x) ≤ −1. Then ExτA ≤ V (x) < ∞ for all x ∈ Ac.

The proof of this theorem literally repeats the first part of the proof of
Theorem 7.5.

The set A can often be chosen to be much smaller than X.
Let us consider an ARMA(1) example where P(x, ·) is given by N(ax, 1)

with a ∈ (0, 1). Let us take V (x) = x2 and compute PV . Let ξx ∼ N(ax, 1).
Then

PV (x) = Eξ2x = a2x2 + 1 = a2V (x) + 1,

One can easily check that PV (x)−V (x) ≤ −1 if x >
�

2/(1 − a2), so we can

conclude that the set A = {x ∈ R : |x| ≤
�

2/(1 − a2)} is positive recurrent.
Let us introduce the following (subprobability) kernel of the embedded

Markov process (observed only when in A):

Q(x,B) = Px{τA < ∞, XτA ∈ B}, x ∈ A, B ∈ X|A.

This is a probability kernel if Px{τA < ∞} = 1 for all x ∈ A. This kernel
often satisfies the Doeblin conditions. For example, in our ARMA example,

Q(x,B) ≥ Px{X1 ∈ B} ≥ c|B|, x ∈ A, B ∈ X|A

where

c = min
|x|,|y|∈A

1
√

2π
e−(x−y)

2/2 > 0.

Let us now understand how to construct invariant distributions using
embedded Markov processes.

Theorem 8.4. Let P (·, ·) be a probability kernel on (X, X ). Let A ∈ X
and a measure ν on (A,X |A) satisfy

(1) EντA < ∞.
(2) ν is Q-invariant, where Q is a probability kernel on (A,X |A) defined

by
Q(x,B) = Px{τA < ∞, XτA ∈ B}.

Then the measure π defined by

π(B) = Eν

∞�

k=0

1{Xk∈B, k<τA} =

�

X
ν(dx)

∞�

k=0

Px{Xk ∈ B, k < τA} B ∈ X ,

is finite and P-invariant.
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Proof: Finiteness of π follows from (1). To prove P -invariance of π, it is
sufficient to check πP(B) = π(B) for measurable B ⊂ A and B ⊂ Ac. For
any B ∈ X ,

πP(B) =

�

X
ν(dx)

∞�

k=0

Px{Xk ∈ dy, k < τA}P(y,B).

If B ⊂ A, then we can continue this as:

πP(B) =

�

X
ν(dx)

∞�

k=0

Px{Xk+1 ∈ B, τA = k + 1}

=

�

X
ν(dx)Q(x,B) = ν(B) = π(B).

If B ⊂ Ac, then

πP(B) =

�

X
ν(dx)

∞�

k=0

Px{Xk+1 ∈ B, k + 1 < τA} = π(B),

and the proof is completed. �

We see that the main ingredients in the above construction are: recur-
rence, a minorization condition, and averaging over excursions.

Note that the proof of the Perron–Frobenius theorem via contraction
in Hilbert projective metric (see Section 3) exploits a similar minorization
idea.

2. A Harris positive recurrence condition

In this section we introduce a version of the Harris condition originated
in [Har56].

We will say that a transition probability P(·, ·) on (X, X ) defines a Harris
(positive) recurrent process if there is a set A ∈ X , a probability measure ν
on (X, X ), numbers p ∈ (0, 1) and m ∈ N such that the following conditions
hold true:

(A) supx∈A ExτA < ∞
(B) Pm(x,B) > pν(B) for all x ∈ A.

Theorem 8.5. If P (·, ·) satisfies the Harris recurrence condition, then
there is a unique invariant distribution ρ satisfying ρ(A) > 0.

Proof: First we define

τmA = min{n > m : Xn ∈ A}.

Condition (A) implies

(8.3) sup
x∈A

Exτ
m
A < ∞.

Also, the method of constructing invariant measures described in the last
session and based on τA can be implemented using τmA instead.



2. A HARRIS POSITIVE RECURRENCE CONDITION 85

So we are going to use the Doeblin condition to prove that the Markov
kernel Q(·, ·) on (A,X |A) defined by

Q(x,B) = Px{τ
m
A < ∞, Xτm

A
∈ B}.

has an invariant distribution and then apply the approach of Theorem 8.4.
First of all, Q(x,B) is indeed a probability kernel due to (8.3).

Let us define

λ(B) =

�

X
ν(dy)Py{τA < ∞, XτA ∈ B}, B ∈ X |A.

Then λ is a probability measure λ on (A,X |A) due to (8.3) and Condi-
tion (B).

Since

Q(x,B) =

�

X
Pm(x, dy)Py{τA < ∞, XτA ∈ B}

≥

�

X
pν(dy)Py{τA < ∞, XτA ∈ B} = pλ(B).

the kernel Q satisfies the Doeblin condition and there is a (unique) Q-
invariant measure µ. Now to prove the existence part, it remains to prove
that the following measure π is finite and P -invariant:

π(B) = Eµ

∞�

k=0

1{Xk∈B, k<τ
m
A } =

�

X
µ(dx)

∞�

k=0

Px{Xk ∈ B, k < τ
m
A } B ∈ X ,

and the proof of this follows the proof of Theorem 8.4, although some changes
are needed.

Problem 8.1. Prove finiteness and P -invariance of π.

Let us prove uniqueness. If there are two distinct P -invariant distri-
butions giving positive weight to A, then there are two different ergodic
distributions giving positive weight to A. If ρ is P -invariant, then for any
B ∈ X ,

ρ(B) = ρPm(B) ≥

�

A
ρ(dx)P(x,A) = ρ(A)pν(B),

so these measures cannot be mutually singular, a contradiction. �

Definition 8.2. The set A that appears in the Harris condition is often
called a small set

Definition 8.3. We say that A ∈ X is accessible from x ∈ X if Pm(x,A) >
0 for some m.

Let us denote all points x ∈ X such that A is accessible from x by Φ(A).
If a distribution ρ is P -invariant, then ρ(Φ(A)) > 0 implies ρ(A) > 0. So,
one can strengthen Theorem 8.5 in the following way:
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Theorem 8.6. If P (·, ·) satisfies the Harris recurrence condition, then
there is a unique invariant distribution ρ satisfying ρ(Φ(A)) > 0. If Φ(A) =
X, i.e., A is accessible from all points, unique ergodicity (i.e., uniqueness of
an invariant measure) holds.

We refer to [MT09] and [Num84] for a much more systematic exposi-
tion of the theory. In particular, using the notion of recurrence with respect
to a measure one can characterize existence of small sets. See also [Bax11]
for a brief exposition of the theory.

Another construction of an invariant measure under the Harris
condition: This construction introduces a split chain approach due to
Nummelin [Num78] and Athreya and Ney[AN78]. It is used systematically
in [MT09] and [Num84].

Let us assume for simplicity that the Harris condition holds true with
m = 1.

We represent the distribution of Xn given Xn−1 ∈ A as follows: let (κn)
be an i.i.d. sequence Bernoulli r.v. taking value 1 with probability p and value
0 with probability 1 − p. Conditioned on {κn = 1}, Xn ∼ ν. Conditioned
on {κn = 0}, Xn ∼ R(x, ·), where R(x, dy) = (P(x, dy) − ν(dy))/(1 − p).

The process (Xn, κn) is Markov with values in the extended space X̃ =

X × {0, 1}. We denote by P̃ν the probability on the extended probability

space X̃Z+ that includes the information about κ’s, and by Ẽν the corre-
sponding expectation.

We create the following sequence of stopping times:

τ1 = min{n ≥ 1 : Xn−1 ∈ A, κn−1 = 1},

τk = min{n ≥ τk−1 + 1 : Xn−1 ∈ A, κn−1 = 1}.

Then (Xτk) forms a Markov process with invariant distribution ν.
Let σk = τk − τk−1, k ∈ N. The excursion lenghts (σk)k∈N form an i.i.d.

sequence under P̃ν.
One can use condition (A) to estimate

Ẽσ1 ≤

∞�

m=1

p(1 − p)r−1rEτA < ∞.

Denoting for brevity σ = σ1, we can define the average occupation measure ρ
by

ρ(B) = Ẽν

∞�

r=0

1{Xr∈B,r<σ} =

∞�

r=0

P̃ν{Xr ∈ B, r < σ}, B ∈ X ,

and use the previous display to show that ρ(X) < ∞.
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Let us prove that ρ is invariant. Let us first notice that

ρP(B) =

�

X
ρ(dx)P(x,B)

=

�

Ac

ρ(dx)P(x,B) + (1 − p)

�

A
ρ(dx)R(x,B) + p

�

A
ρ(dx)ν(B)

=
∞�

r=0

P̃ν{Xr ∈ A
c,Xr+1 ∈ B, r + 1 < σ}

+
∞�

r=0

P̃ν{Xr ∈ A,Xr+1 ∈ B, r + 1 < σ}

+
∞�

r=0

P̃ν{Xr ∈ A,Xr+1 ∈ B, σ = r + 1}.

Now we (i) combine the first two sums into one and (ii) use the invariance
of ν under the embedded Markov chain to derive

∞�

r=0

P̃ν{Xr ∈ A,Xr+1 ∈ B, σ = r + 1} = ν(B).

The result is

ρP(B) =

∞�

r=0

P̃ν{Xr+1 ∈ B, r + 1 < σ} + ν(B)

=
∞�

r=1

P̃ν{Xr ∈ B, r < σ} + P̃ν{X0 ∈ B, 0 < σ}

=

∞�

r=0

P̃ν{Xr ∈ B, r < σ} = ρ(B),

where we used σ ≥ 1 in the second indentity. �

3. Coupling and convergence in total variation under the
Doeblin condition

In this section we introduce a very important tool called coupling. The
idea is to benefit from realizing several Markov processes with the same
transition mechanism on one probability space. We will give a different
proof of uniqueness of

proof of uniqueness of an invariant distribution under the Doe-
blin condition: Let ρ1 and ρ2 be two different invariant distributions.
Let us prove that they are equal to each other using the coupling method.
Let us organize a Markov process on (X×X, X ×X) with initial distribution
ρ1 × ρ2 and special transition probabilities P ((x1, x2), ·) that we proceed
to describe. So, we are going to describe the distribution of (X1n+1,X

2
n+1)

conditioned on (X1n,X
2
n) = (x1, x2).
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If x1 �= x2 then we will need a Bernoulli r.v. κ taking value 1 with
probability p and value 0 with probability 1 − p. Let ξ, η1, η2 be a r.v.’s
independent of κ with distributions ν, R(x1, ·) and R(x2, ·), respectively.
Here R(x, ·) = (P(x, ·) − pν(·))/(1 − p). Now we define P((x1, x2), ·) to be
the joint distribution of X-valued random variables Y1 and Y2 defined by:

Y1 =κξ + (1 − κ)η1,

Y2 =κξ + (1 − κ)η2.

If x1 = x2 we let Y be distributed according to P(x1, ·) and set P ((x1, x2), ·)
to be the joint distribution of (Y, Y ). This distribution is concentrated on
the diagonal set {(y, y) : y ∈ X}.

Notice that in both cases the transition probabilities P ((x1, x2), ·) project
onto P(x1, ·) and P(x2, ·). This is obvious for x1 = x2, whereas if x1 �= x2
then for any A ∈ X ,

P((x1, x2), A × X) = P{Y1 ∈ A; κ = 1} + P{Y1 ∈ A; κ = 0}

= pP{ξ ∈ A} + (1 − p)P{η1 ∈ A}

= pν(A) + (1 − p)(P(x1,A) − pν(A))/(1 − p) = P(x1,A),

and a similar computation shows P{Y2 ∈ A} = P(x2,A).
Therefore, the Markov process (X1n,X

2
n) defined by the initial distribu-

tion ρ1 × ρ2 and transition probabilities P ((x1, x2), ·) satisfies the following
property: the distributions of X1 and X2 coincide with distributions of
Markov process with initial distribution ρ1 and ρ2, respectively, and tran-
sition probabilities P (·, ·). To define the Markov measure Pρ1×ρ2 one can
introduce an auxiliary probability space (Ω,F, P) that supports a sequence
of i.i.d. random variables (κn)n∈N distributed as κ.

Moreover, if X1n = X2n for some n, then X1m = X2m holds for all m ≥ n.
Therefore,

Pρ1×ρ2{X
1
n �= X2} ≤ Pρ1×ρ2{τ > n}, n ∈ N,

where τ = min{k ∈ N : X1k = X2k}.
In particular, for any A ∈ X

|ρ1(A) − ρ2(A)| = |Pρ1{Xn ∈ A} − Pρ2{Xn ∈ A}|

= |Pρ1×ρ2{X
1
n ∈ A} − Pρ1×ρ2{X

2
n ∈ A}|

≤ Pρ1×ρ2({X1n ∈ A}�{X2n ∈ A})

≤ Pρ1×ρ2{X
1
n �= X2n} ≤ Pρ1×ρ2{τ > n}.

We have

Pρ1×ρ2{τ > n} ≤ P{κ1 = . . . = κn = 0} ≤ (1 − p)n,

and, taking n → ∞, we obtain ρ1(A) = ρ2(A) which completes the proof.�

The stopping time τ in the above proof is called the coupling time.
The proof can easily be modified to provide the proof of the following

strengthening of Theorem 8.2:
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Theorem 8.7. Let Doeblin’s condition be satisfied. If ρ is the invariant
distribution (the uniqueness of which is guaranteed by Theorem 8.2), then
for any other initial distribution ν,

�νPn − ρ�TV ≤ (1 − p)n.

�





CHAPTER 9

Taking the topology into account

1. Feller property and existence of invariant measures the via
Krylov–Bogolyubov approach

Some regularity properties of transition kernels are convenient to formu-
late in terms of the operator P on bounded functions or the semigroup
(Pn)n∈Z+ generated by P . Let (X, d) be a metric space with Borel σ-
algebra X .

Definition 9.1. A transition probability P (·, ·) on (X, d) is Feller if for
every bounded continuous f : X → R, Pf is also continuous.

Feller property means that P(x, ·) is continuous in x in the topology of
weak convergence.

Let us now state an analogue of the Krylov–Bogolyubov theorem for
Markov processes.

Theorem 9.1. Let ρ be a probability measure on (X, X ) such that the
sequence (µn)n∈N defined by

(9.1) µn =
1

n

n−1�

j=0

ρP j = ρ
1

n

n−1�

j=0

P j, n ∈ N

is tight. Then there is a P -invariant measure. Also, condition (9.1) is
guaranteed by tightness of the sequence (ρPn)n∈N.

Proof: By Prokhorov’s theorem, tightness implies relative compactness,
so there is a sequence nk ↑ ∞ and a probability measure ν such that µnk

converges to ν weakly.
To prove that νP = ν, it is sufficient to prove

(9.2) νPf = νf

for all bounded continuous functions f. For such a function f, the Feller
property guarantees that Pf is continuous, so due to the weak convergence,

91
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µf = limk→∞ µnk
f and µPf = limk→∞ µnk

Pf. Therefore,

|νPf − νf| =

�
�
�
�
�
�

lim
k→∞

1

nk

nk−1�

j=0

ρP jPf − lim
k→∞

1

nk

nk−1�

j=0

ρP jf

�
�
�
�
�
�

=

�
�
�
�
�
�

lim
k→∞

1

nk




nk−1�

j=0

ρP j+1f −

nk−1�

j=0

ρP jf





�
�
�
�
�
�

≤ lim
k→∞

�
�
�
�

1

nk
(Pnkf − f)

�
�
�
�
∞

≤ lim
k→∞

2�f�∞
nk

= 0,

so (9.2) holds.
To prove the second claim of the theorem, we note that if a compact

set K satisfies ρPn(Kc) ≤ ε for all n, then µn(Kc) ≤ ε for all n. �

Theorem 9.2. Suppose (X, X ) is a metric space. Let V : X → R be a
measurable function such that Ur = {x ∈ X : V (x) ≤ r} is a pre-compact
set for any r > 0. If a transition probability P (·, ·) on (X, X ) satisfies

(9.3) PV (x) ≤ αV (x) + β, x ∈ X,

for some α ∈ (0, 1) and β ≥ 0, then there is an invariant distribution for P .

Proof: By iterating (9.3), we obtain

P2V (x) ≤ α(αV (x) + β) + β ≤ α2V + αβ + β,

PnV (x) ≤ αnV (x) + β(αn−1 + . . . + α + 1) ≤ αnV (x) +
β

1 − α
.

Therefore, defining for any x0 ∈ X, µn by (9.1) with ρ = δx0. we get

µnV = δx0

1

n

n−1�

j=0

P jV ≤ δx0

�

V +
β

1 − α

�

= V (x0) +
β

1 − α
.

Due to Markov’s inequality

µn{x : V > r} ≤
µnV

r
≤

1

r

�

V (x0) +
β

1 − α

�

.

This estimate on the measure µn of the complement of pre-compact set
Ur does not depend on n, and can be made arbitrarily small by choosing
sufficiently large values of r. Therefore, µn is a tight family. Theorem 9.1
implies that there is a P -invariant measure. �

Let us consider an ARMA(1) example where P(x, ·) is given by N(ax, 1)
with a ∈ (0, 1). Let us take V (x) = x2 and compute PV . Let ξx ∼ N(ax, 1).
Then

PV (x) = Eξ2x = a2x2 + 1 = a2V (x) + 1,

so conditions of Theorem 9.2 hold with α = a2 and β = 1.
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2. Applications to SDEs, Stochastic heat equation, stochastic
Navier–Stokes equation

Will fill in later.

3. Strong Feller property and uniqueness.

Definition 9.2. The resolvent kernel is defined by

Q(y,A) =
�

n∈N

2−nPn(y, U), y ∈ X, A ∈ X .

Definition 9.3. The support of a probability measure µ on (X, X ) de-
noted by suppµ consists of all points x ∈ X such that for every open set U
containing x, µ(U) > 0

Definition 9.4. A point x ∈ X is called P -acccessible if for all y ∈ X,
x ∈ suppQ(y, ·). The set of all P -accessible points will be denoted by
Acc(P ).

Lemma 9.1. For every P -invariant measure µ, Acc(P) ⊂ supp(µ).

Proof: Since µ = µP , we compute

µQ =
�

n∈N

2−nµPn =
�

n∈N

2−nµ = µ,

i.e., µ is also invariant under Q. Therefore, for every x ∈ Acc(P) and every
open set U containing x, we obtain

µ(U) =

�

X
µ(dy)Q(y, U) > 0.

�

Definition 9.5. The kernel P is called strong Feller if for every bounded
measurable function f : X → R, Pf is a continuous function.

An immediate corollary of this definition is that for a strong Feller kernel
P and any set A ∈ X , P(x,A) = P1A(x) is a continuous function. While
the usual Feller property means that P(x, ·) converges to P(y, ·) weakly as
x → y, the strong Feller property means convergence almost as strong as
total variation convergence. Any continuous deterministic map φ : X →
X generates a Markov kernel P (x, ·) = δφ(x) that is Feller but not strong
Feller. One can also say that strong Feller transition probabilities improve
the regularity by smoothening whereas the usual Feller kernels only preserve
the regularity.

One obvious consequence of the strong Feller property is that if P (x,A) >
0 for some x and A, then P(y,A) > 0 for all y that are sufficiently close to
x. In particular P (x, ·) and P(y, ·) cannot be mutually singular if x and y
are close enough.
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Lemma 9.2. Suppose P is strong Feller. Then for distinct P -invariant
and ergodic measures µ and ν, supp(µ) ∩ supp(ν) = ∅.

Proof: There is a set A ∈ X such that µ(A) = 1 and ν(A) = 0. Let us
define h(x) = P1A(x) = P(x,A). By the choice of A, we have h(x) = 1
for µ-a.e. x, and h(x) = 0 for ν-a.e. x. Since h is continuous due to the
strong Feller property, we conclude that if x ∈ suppµ, then h(x) = 1, and if
x ∈ supp ν, h(x) = 0. Therefore, suppµ and supp ν are disjoint. �

Lemma 9.3. Let P be a strong Feller transition kernel such that Acc(P) �=
∅. Then there is at most one P -invariant distribution.

Proof: Suppose that there are two distinct invariant distributions. Then
there are two distinct ergodic distributions µ and ν. Lemma 9.1 impies

Acc(P ) ⊂ suppµ ∩ supp ν = ∅,

a contradiction. �

Many finite-dimensional Markov process are strong Feller. The notion
was introduced by Girsanov in [Gir60], and the first theorem on strong
Feller property appeared in[Mol68]:

Theorem 9.3. The Markov semigroup on a compact manifold generated
by a second-order uniformly elliptic operator with C2 drift and diffusion
coefficients is strong Feller.

The study of the strong Feller property is tightly related to the regularity
of transition densities. Many results can be found in [SV06].

The strong Feller property is tightly related to convergence to the unique
invariant measure in total variation.

Let us now consider an example where there is an obvious unique invari-
ant distribution, but the strong Feller property does not hold. Consider the
Markov family associated to the following system of stochastic equations:

dX = −Xdt + dW,

dY = − Y dt.

The evolution of X and Y is chosen to be disentangled on purpose. We have
Y (t) = e−tY (0). Therefore the time t transition probability P t((x0, y0), ·)
is concentrated on the line {(x, y) ∈ R2 : y = y0e

−t}. In particular, if
y0 �= y�0, then the measures P t((x0, y0), ·) and P t((x0, y

�
0), ·) are mutually

singular and therefore P cannot be strong Feller.
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